
Machine Learning Course 2024 Spring: Homework 1

March 1, 2024

1 Problem 1

Given a data set D = {(xi, yi)}mi=1 where xi ∈ Rd and yi ∈ R. A L2-regularized least squares

linear regression model (ridge regression) is employed to best fit this data set. It can be

formulated as the following optimization problem:

min
w,b

ℓ(w, b) =
1

2

m∑
i=1

(wTxi + b− yi)
2 +

λ

2
||w||22, (1.1)

where w ∈ Rd and b ∈ R are the weight and bias terms respectively, and λ is the regularization

parameter. Try to answer the following questions:

1. Rewrite the optimization problem into matrix form. Please clearly demonstrate the defi-

nition and shape of the matrix represented by each letter you use.

2. Is the optimal parameter (w∗, b∗) unique for any λ > 0? Please prove your conclusion.

3. The data set D with 6 instances is shown in Table 1, where each sample has 3 dimensions.

Please calculate the optimal parameter (w∗, b∗) for λ = 0.1.

Table 1: Training set for ridge regression.

ID x1 x2 x3 y ID x1 x2 x3 y

1 2 1 3 0 4 3 5 2 -3

2 5 3 6 0 5 1 7 2 -3

3 4 2 5 0 6 6 1 4 3
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4. Consider a random noise ε ∼ N(0, σ2) is added to the simple linear regression model,

that is,

yi = θTxi + εi. (1.2)

Assume a Gaussian prior over each element of θ with mean 0 and standard deviation τ , i.e.

θj ∼ N(0, τ 2). Show that the estimate of θ∗ by maximizing the conditional distribution

p(θ|y), where y = [y1, y2, . . . , ym]
T, is equivalent to solving the optimization problem

Eq.(1.1) with b = 0.

2 Problem 2

In a binary classification problem, each instance xi ∈ Rd in a data set D = {(xi, yi)}mi=1 has a

label yi ∈ {0, 1}. A powerful tool to handle this kind of problem is the logistic regression model

with the definition of the sigmoid function Eq.(2.1).

σ(z) =
1

1 + e−z
, such that z = wTx+ b (2.1)

To simplify this problem, we assume that β = (w; b), x̂ = (x; 1). Since its negative log-

likelihood function Eq.(2.2) is convex, we can optimize it efficiently with Gradient Descent

method, Newton’s Method, and so on.

ℓ(β) =
m∑
i=1

(−yiβ
Tx̂i + ln(1 + eβ

Tx̂i)) (2.2)

1. Prove the sigmoid function Eq.(2.1) is non-convex, and Eq.(2.2) is convex for parameter

β.

2. Suppose we are facing a K-class classification problem instead of a binary classification

problem, where yi ∈ {1, 2, . . . , K}. Please expand the logistic regression model Eq.(2.1)

to a multi-class version and write down the log-likelihood function of this multi-class

logistic regression model.

3 Problem 3

In a binary classification problem, given the true label of the instance and the predicted values

of the two classifiers C1, C2, calculate the relevant performance measures.
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1. Calculate AUC (for C1 and C2 respectively).

2. Confusion Matrix (threshold=0.3 and 0.5 for C1 and C2 respectively).

3. F1-Score (threshold=0.3 and 0.5 for C1 and C2 respectively).

Table 2: True label and predicted values of two classifiers.

ID y yC1 yC2 ID y yC1 yC2

1 0 0.38 0.19 6 1 0.43 0.49

2 0 0.28 0.89 7 0 0.88 0.23

3 1 0.67 0.47 8 1 0.54 0.66

4 1 0.38 0.89 9 1 0.29 0.15

5 0 0.11 0.95 10 0 0.75 0.66
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