Machine Learning Course 2024 Spring: Homework 2

March 31, 2024

1 Problem 1

Solution:

1. A linear SVM with C = 0.02.

Solution: Correspond to Figure 1.4. The decision boundary of linear SVM is linear. In comparison with Figure 1.3, the line does not separate two classes strictly, which corresponds to the case C is small and more errors are allowed.

2. A linear SVM with C = 20.

Solution: Correspond to Figure 1.3. The decision boundary of linear SVM is linear. In comparison with Figure 1.4, the line separates two classes strictly, which corresponds to the case C is big.

3. A hard-margin kernel SVM with $\kappa(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{\top} \boldsymbol{v} + (\boldsymbol{u}^{\top} \boldsymbol{v})^2$.

Solution: Correspond to Figure 1.5. The decision boundary of quadratic kernel is given by $f(\boldsymbol{x}) = \sum_{i} \alpha_i \left(\boldsymbol{x}_i^\top \boldsymbol{x} + \left(\boldsymbol{x}_i^\top \boldsymbol{x} \right)^2 \right) + b$. Hence the decision boundary is $f(\boldsymbol{x}) = 0$. Since $f(\boldsymbol{x})$ is second order function of \boldsymbol{x} , the curve can be ellipse or hyperbolic curve. Figure 1.5 is hyperbolic curve.

4. A hard-margin kernel SVM with $\kappa(\boldsymbol{u},\boldsymbol{v}) = \exp\left(-5\|\boldsymbol{u}-\boldsymbol{v}\|^2\right)$.

Solution: Correspond to Figure 1.6. We can write out the decision function as $f(\boldsymbol{x}) = \sum_{i} \alpha_{i} \exp\left(-\gamma \|\boldsymbol{x}_{i} - \boldsymbol{x}\|^{2}\right) + b$. If γ is large, the kernel value is quite small even if the

distance between the x and x_i is small. This makes the classification hard with few supporting vectors, Hence Figure 1.6 corresponds to $\gamma = 5$.

5. A hard-margin kernel SVM with $\kappa(\boldsymbol{u}, \boldsymbol{v}) = \exp\left(-\frac{1}{5}\|\boldsymbol{u} - \boldsymbol{v}\|^2\right)$. Solution: Correspond to Figure 1.1.

2 Problem 2

Solution:

1. Construct the Lagrangian:

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \mu) = -\sum_{i=1}^{n} \log(\alpha_i + x_i) + \sum_{i=1}^{n} \lambda_i(-x_i) + \mu(\sum_{i=1}^{n} x_i - 1),$$
(1)

where $\boldsymbol{x} = [x_1, \dots, x_n]^{\top}, \boldsymbol{\lambda} = [\lambda_1, \dots, \lambda_n]^{\top} \in \mathbb{R}^n$, and $\mu \in \mathbb{R}$.

The KKT conditions are:

- (1) $-x_i^* \leq 0, i = 1, \dots, n$
- (2) $\sum_{i=1}^{n} x_i^* 1 = 0$
- (3) $\lambda_i^* \ge 0, i = 1, \dots, n$
- (4) $\lambda_i^* x_i^* = 0, i = 1, \dots, n$
- (5) $\nabla_{x_i^*} L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \mu^*) = -\frac{1}{\alpha_i + x_i^*} \lambda_i^* + \mu^* = 0, i = 1, \dots, n$

2. According to the KKT conditions (3)-(5), we have

$$x_i^*(\mu^* - \frac{1}{\alpha_i + x_i^*}) = 0, i = 1, \dots, n$$
(2)

$$\mu^* \ge \frac{1}{\alpha_i + x_i^*}, i = 1, \dots, n$$
(3)

- (1) If $\mu^* < \frac{1}{\alpha_i}$, Eq.(3) is satisfied when $x_i^* > 0$. Then, according to Eq.(2), we have $x_i^* = \frac{1}{\mu^*} \alpha_i$;
- (2) If $\mu^* \ge \frac{1}{\alpha_i}$, according to Eq.(2), we have $x_i^* = 0$.

Thus we have,

$$x_i^* = \max\{0, \frac{1}{\mu^*} - \alpha_i\}.$$
 (4)

Substituting Eq.(4) into the condition (2), we can obtain

$$\sum_{i=1}^{n} \max\{0, \frac{1}{\mu^*} - \alpha_i\} = 1.$$
(5)

Therefore, the optimal solution of the problem is $x_i^* = \max\{0, \frac{1}{\mu^*} - \alpha_i\}, i = 1, \dots, n$, where μ^* satisfies Eq.(5)

3 Problem 3

1. Solution:

$$\begin{aligned} ||\phi(\boldsymbol{x}_{i}) - \phi(\boldsymbol{x}_{j})||^{2} \\ &= \phi(\boldsymbol{x}_{i})^{\top}\phi(\boldsymbol{x}_{i}) + \phi(\boldsymbol{x}_{j})^{\top}\phi(\boldsymbol{x}_{j}) - 2\phi(\boldsymbol{x}_{i})^{\top}\phi(\boldsymbol{x}_{j}) \\ &= \kappa(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}) + \kappa(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}) - 2\kappa(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) \\ &= 1 + 1 - 2\exp(-\frac{1}{2}||\boldsymbol{x}_{i} - \boldsymbol{x}_{j}||^{2}) \\ &< 2 \end{aligned}$$

2. **Proof:**

Consider a simpler kernel function $\kappa'(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{\top} \boldsymbol{x}_j + c$ first. For any dataset $D = \{\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_m\}$, the kernel matrix \mathbf{K}' is:

$$\mathbf{K}' = \begin{pmatrix} \kappa'(\boldsymbol{x}_1, \boldsymbol{x}_1) & \cdots & \kappa'(\boldsymbol{x}_1, \boldsymbol{x}_m) \\ \vdots & \ddots & \vdots \\ \kappa'(\boldsymbol{x}_m, \boldsymbol{x}_1) & \cdots & \kappa'(\boldsymbol{x}_m, \boldsymbol{x}_m) \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_1^\top \boldsymbol{x}_1 + c & \cdots & \boldsymbol{x}_1^\top \boldsymbol{x}_m + c \\ \vdots & \ddots & \vdots \\ \boldsymbol{x}_m^\top \boldsymbol{x}_1 + c & \cdots & \boldsymbol{x}_m^\top \boldsymbol{x}_m + c \end{pmatrix}.$$
(6)

The kernel matrix can be further rewritten as

$$\mathbf{K}' = \begin{pmatrix} \mathbf{x}_{1}^{\top} \mathbf{x}_{1} & \cdots & \mathbf{x}_{1}^{\top} \mathbf{x}_{m} \\ \vdots & \ddots & \vdots \\ \mathbf{x}_{m}^{\top} \mathbf{x}_{1} & \cdots & \mathbf{x}_{m}^{\top} \mathbf{x}_{m} \end{pmatrix} + \begin{pmatrix} c & \cdots & c \\ \vdots & \ddots & \vdots \\ c & \cdots & c \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{x}_{1}^{\top} \\ \vdots \\ \mathbf{x}_{m} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1} & \cdots & \mathbf{x}_{m} \end{pmatrix} + c \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix}$$
$$= \mathbf{X} \mathbf{X}^{\top} + c \mathbf{1} \mathbf{1}^{\top},$$
 (7)

where $\mathbf{X} \in \mathbb{R}^{m \times d}$ is the data matrix. Considering the positive definiteness of matrix \mathbf{K}' , for any non-zero vector $\boldsymbol{w} \in \mathbb{R}^m$, we have

$$\boldsymbol{w}^{\top} \mathbf{K}' \boldsymbol{w} = \boldsymbol{w}^{\top} (\mathbf{X} \mathbf{X}^{\top} + c \mathbf{1} \mathbf{1}^{\top}) \boldsymbol{w}$$

= $\boldsymbol{w}^{\top} \mathbf{X} \mathbf{X}^{\top} \boldsymbol{w} + c \boldsymbol{w}^{\top} \mathbf{1} \mathbf{1}^{\top} \boldsymbol{w}$
= $(\mathbf{X}^{\top} \boldsymbol{w})^{\top} (\mathbf{X}^{\top} \boldsymbol{w}) + c (\mathbf{1}^{\top} \boldsymbol{w})^{\top} (\mathbf{1}^{\top} \boldsymbol{w})$
= $||\mathbf{X}^{\top} \boldsymbol{w}||^{2} + c (\mathbf{1}^{\top} \boldsymbol{w})^{2}.$ (8)

- (a) When $c \ge 0$, we have $\boldsymbol{w}^{\top} \mathbf{K}' \boldsymbol{w} \ge 0$, thus, \mathbf{K}' is semi-positive definite. According to Mercer's Theorem (refer to page 55 of Lecture 6 slides), $\kappa'(\boldsymbol{x}_i, \boldsymbol{x}_j)$ is a kernel function. According to the kernels' composition rule (refer to page 57 of Lecture 6 slides), $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\kappa'(\boldsymbol{x}_i, \boldsymbol{x}_j))^N$ is also a kernel function as a multiplication of Nkernel functions.
- (b) When c < 0, it cannot be guaranteed that $\boldsymbol{w}^{\top} \mathbf{K}' \boldsymbol{w} \ge 0$, thus, \mathbf{K}' is not semi-positive definite. Consequently, $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j)$ is not a kernel function.