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“Vanilla” Neural Network
one	to	one

Vanilla	Neural	Networks
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Recurrent Neural Networks: Process Sequences
one	to	one one	to	many

e.g.	Image	Captioning
image	->	sequence	of	words
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Recurrent Neural Networks: Process Sequences
one	to	one one	to	many many	to	one

e.g.	action	prediction
sequence	of	video	frames	->	action	class
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Recurrent Neural Networks: Process Sequences
one	to	one one	to	many many	to	one many	to	many

e.g.	Video	Captioning
Sequence	of	video	frames	->	caption
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Recurrent Neural Networks: Process Sequences
one	to	one one	to	many many	to	one many	to	many many	to	many

e.g.	Video	classification	on	frame	level
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Recurrent Neural Network

𝑦

RNN

𝑥
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Recurrent Neural Network

𝑦

RNN

𝑥

Key	idea:	RNNs	have	an
“internal	state”	that	is
updated	as	a	sequence	is
processed
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Unrolled RNN
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RNN hidden state update

n We	can	process	a	sequence	of	vectors	𝒙 by applying	
a	recurrence	formula	at	every	time	step: 𝑦

RNN

𝑥

new state

some	function
with	parameter	𝑊

old state input	vector	at
time	step	𝑡
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Recurrent Neural Network

𝑦!

RNN

𝑥!

𝑦"

RNN
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RNN
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𝑦$

RNN
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...
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Recurrent Neural Network

n We	can	process	a	sequence	of	vectors	𝒙 by applying	
a	recurrence	formula	at	every	time	step: 𝑦

RNN

𝑥Notice:	the	same	function	and	the	same	set
of	parameters	are	used	at	every	time	step.
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(Vanilla) Recurrent Neural Network

𝑦

RNN

𝑥

The	state	consists	of	a	single	“hidden”	vector	𝒉:
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RNN: Computational Graph

𝑥!

ℎ% 𝑓! ℎ!
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RNN: Computational Graph

𝑥! 𝑥"

ℎ% 𝑓! ℎ! 𝑓! ℎ"
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RNN: Computational Graph

𝑥! 𝑥" 𝑥#
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RNN: Computational Graph

𝑥! 𝑥" 𝑥#

...
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Re-use	the	same	weight	matrix	at	every	time-step
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RNN: Computational Graph: Many to Many
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RNN: Computational Graph: Many to Many
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RNN: Computational Graph: Many to Many
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RNN: Computational Graph: Many to One
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RNN: Computational Graph: One to Many
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RNN: Computational Graph: One to Many
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RNN: Computational Graph: One to Many
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Sequence to Sequence: Many-to-one + one-to-many

𝑥! 𝑥" 𝑥#

...
ℎ#ℎ$ 𝑓"% ℎ! 𝑓"% ℎ" 𝑓"% ℎ# ℎ&

Many	to	one:	Encode	input
sequence	in	a	single	vector

Sutskever et	al,	“Sequence	to	Sequence	Learning	with	Neural	Networks”,	NIPS	2014

...𝑓"' ℎ! 𝑓"' ℎ" 𝑓"'

One	to	many:	Produce	output
sequence	from	single	input	vector

𝑦! 𝑦"
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Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

Example	training	sequence:	“hello”
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Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

Example	training	sequence:	“hello”
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Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

Example	training	sequence:	“hello”
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Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

At	test-time	sample	characters
one	at	a	time,	feed	back	to
model
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Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

At	test-time	sample	characters
one	at	a	time,	feed	back	to
model
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Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

At	test-time	sample	characters
one	at	a	time,	feed	back	to
model
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Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

At	test-time	sample	characters
one	at	a	time,	feed	back	to
model
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Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

Matrix	multiply	with	a	one-hot	vector	just
extracts	a	column	from	the	weight	matrix.
We	often	put	a	separate	embedding	layer
between	input	and	hidden	layers.
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Backpropagation through time (BPTT)
Forward	through	entire	sequence	to
compute	loss,	then	backward	through
entire	sequence	to	compute	gradient
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RNN tradeoffs

n RNN	Advantages:	
q Can	process	any	length	input	
q Computation	for	step	𝑡 can	(in	theory)	use	information	from	many	
steps	back	

q Model	size	doesn’t	increase	for	longer	input	
q Same	weights	applied	on	every	timestep,	so	there	is	symmetry	in	how	
inputs	are	processed.	

n RNN	Disadvantages:	
q Recurrent	computation	is	slow	
q In	practice,	difficult	to	access	information	from	many	steps	back
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Vanilla RNN Vanishing Gradients
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:
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Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:
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Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:
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Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:

Almost	always	< 1
Vanishing	gradients



Machine Learning Spring	Semester 43

Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:

Largest	singular	value	>	1: Exploding	gradients

Largest	singular	value	<	1: Vanishing	gradients
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Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:

Largest	singular	value	>	1: Exploding	gradients

Largest	singular	value	<	1: Vanishing	gradients

Gradient	clipping:
Scale	gradient	if	its
norm	is	too	big
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Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:

Largest	singular	value	>	1: Exploding	gradients

Largest	singular	value	<	1: Vanishing	gradients Change RNN
architecture
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Long Short Term Memory (LSTM)

Vanilla	RNN LSTM

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997
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Long Short Term Memory (LSTM)

Vanilla	RNN LSTM

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

Four	gates

Cell	state

Hidden	state
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Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997
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4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
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Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊

𝑥

ℎ

sigmoid

sigmoid

sigmoid

tanh

𝑖

𝑓

𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
𝑔:	Gate	gate,	how	much	to	write	to	cell
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Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊

𝑥

ℎ
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𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
𝑔:	Gate	gate,	how	much	to	write	to	cell

𝑖:	Input	gate,	whether	to	write	to	cell
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Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊
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𝑖

𝑓

𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
𝑔:	Gate	gate,	how	much	to	write	to	cell

𝑖:	Input	gate,	whether	to	write	to	cell

𝑓:	Forget	gate,	whether	to	erase	cell



Machine Learning Spring	Semester 52

Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊

𝑥

ℎ

sigmoid
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sigmoid
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𝑖

𝑓

𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
𝑔:	Gate	gate,	how	much	to	write	to	cell

𝑖:	Input	gate,	whether	to	write	to	cell

𝑓:	Forget	gate,	whether	to	erase	cell

𝑜:	Output	gate,	how	much	to	reveal	cell
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Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997
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Long Short Term Memory (LSTM) : Gradient Flow

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

Backpropagation	from	𝑐# to
𝑐#$% only	elementwise
multiplication	by	𝑓,	no	matrix
multiply	by	𝑊
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Long Short Term Memory (LSTM) : Gradient Flow

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997
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Do LSTMs solve the vanishing gradient problem?

n The	LSTM	architecture	makes	it	easier	for	the	RNN	to	preserve	
information	over	many	timesteps	
q e.g.	if	the	𝒇 = 𝟏 and	the	𝒊 = 𝟎,	then	the	information	of	that	cell	is	
preserved	indefinitely.

q By	contrast,	it’s	harder	for	vanilla	RNN	to	learn	a	recurrent	weight	
matrix	𝑊ℎ that	preserves	info	in	hidden	state	

n LSTM	doesn’t	guarantee	that	there	is	no	vanishing/exploding	
gradient,	but	it	does	provide	an	easier	way	for	the	model	to	
learn	long-distance	dependencies
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Summary
n RNNs	allow	a	lot	of	flexibility	in	architecture	design
n Vanilla	RNNs	are	simple	but	don’t	work	very	well
n Backward	flow	of	gradients	in	RNN	can	explode	or	vanish.
n Exploding	is	controlled	with	gradient	clipping.	Vanishing	is	controlled	

with	additive	interactions	(LSTM)
n Common	to	use	LSTM	or	GRU:	their	additive	interactions	improve	

gradient	flow
n Better/simpler	architectures	are	a	hot	topic	of	current	research,	as	well	

as	new	paradigms	for	reasoning	over	sequences
n Better	understanding	(both	theoretical	and	empirical)	is	needed.


