Lecture 10 Recurrent Neural Networks

Machine Learning Spring Semester (Sexual Learning 1

one to one

one to one one to many

Recurrent Neural Network

Machine Learning The Spring Semester The S

Recurrent Neural Network

Unrolled RNN

Machine Learning Spring Semester (Sexual Learning 9

RNN hidden state update

No We can process a sequence of vectors x by applying a **recurrence formula** at every time step: $\begin{array}{ccc} \boxed{y} & \boxed{y} \\ \end{array}$

Recurrent Neural Network

Recurrent Neural Network

No We can process a sequence of vectors x by applying a **recurrence formula** at every time step: $\begin{array}{ccc} \boxed{y} & \boxed{y} \\ \end{array}$

$$
h_t=f_W(h_{t-1},x_t)\\
$$

Notice: the same function and the same set $\frac{x}{x}$ of parameters are used at every time step.

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector \bm{h} :

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

RNN: Computational Graph: One to Many

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output sequence from single input vector

Sutskever et al, "Sequence to Sequence Learning with Neural Networks", NIPS 2014

Machine Learning

Spring Semester

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Vocabulary: [h,e,l,o]

$$
h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t)
$$

Example training sequence: "hello"

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Vocabulary: [h,e,l,o]

Vocabulary: [h,e,l,o]

Vocabulary: [h,e,l,o]

Vocabulary: [h,e,l,o]

Vocabulary: [h,e,l,o]

Matrix multiply with a one-hot vector just extracts a column from the weight matrix. We often put a separate embedding layer between input and hidden layers.

$$
\begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} w_{11} \end{bmatrix}
$$

\n
$$
\begin{bmatrix} w_{21} & w_{22} & w_{23} & w_{14} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} w_{21} \end{bmatrix}
$$

\n
$$
\begin{bmatrix} w_{31} & w_{32} & w_{33} & w_{14} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} w_{31} \end{bmatrix}
$$

Backpropagation through time (BPTT)

RNN tradeoffs

- **RNN** Advantages:
	- \Box Can process any length input
	- **Q** Computation for step t can (in theory) use information from many steps back
	- \Box Model size doesn't increase for longer input
	- \Box Same weights applied on every timestep, so there is symmetry in how inputs are processed.
- **RNN Disadvantages:**
	- \Box Recurrent computation is slow
	- \Box In practice, difficult to access information from many steps back

Vanilla RNN Vanishing Gradients

$$
\begin{aligned} h_t &= \mathrm{tanh}(W_{hh}h_{t-1}+W_{xh}x_t) \\ &= \mathrm{tanh}\bigg((W_{hh} \quad W_{hx}) {h_{t-1} \choose x_t} \bigg) \\ &= \mathrm{tanh}\bigg(W{h_{t-1} \choose x_t} \bigg) \end{aligned}
$$

$$
\begin{aligned} h_t &= \mathrm{tanh}(W_{hh}h_{t-1}+W_{xh}x_t) \\ &= \mathrm{tanh}\bigg((W_{hh} \quad W_{hx}) \binom{h_{t-1}}{x_t} \bigg) \\ &= \mathrm{tanh}\bigg(W \binom{h_{t-1}}{x_t} \bigg) \end{aligned}
$$

$$
\frac{\partial h_t}{\partial h_{t-1}} = \tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}
$$

Machine Learning Spring Semester (Sexual Learning 38

Gradients over multiple time steps:

$$
\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \ldots \frac{\partial h_1}{\partial W}
$$

Machine Learning Spring Semester (Sexual Learning 39

Gradients over multiple time steps:

$$
\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \ldots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \Biggl(\prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}}\Biggr) \frac{\partial h_1}{\partial W}
$$

Machine Learning Spring Semester (Sexual diversity) 40

Gradients over multiple time steps:

Gradients over multiple time steps:

Almost always < 1 **Vanishing gradients**

$$
\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \Biggl(\prod_{t=2}^T \! \! \biggl[\tanh'(W_{hh} h_{t-1} + W_{xh} x_t) \! \biggr] \! \Biggr) W_{hh}^{T-1} \frac{\partial h_1}{\partial W}
$$

Gradients over multiple time steps:

Gradients over multiple time steps:

Gradients over multiple time steps:

Vanilla RNN LSTM

$$
\begin{aligned} h_t &= \mathrm{tanh}(W_{hh}h_{t-1}+W_{xh}x_t) \\ &= \mathrm{tanh}\bigg((W_{hh} \quad W_{hx}) \binom{h_{t-1}}{x_t} \bigg) \\ &= \mathrm{tanh}\bigg(W \binom{h_{t-1}}{x_t} \bigg) \end{aligned}
$$

$$
\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \\ c_t = f \odot c_{t-1} + i \odot g \\ h_t = o \odot \tanh(c_t)
$$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Vanilla RNN LSTM

$$
\begin{aligned} h_t &= \mathrm{tanh}\big(W_{hh}h_{t-1}+W_{xh}x_t\big) \\ &= \mathrm{tanh}\bigg((W_{hh} \hspace{0.5em} W_{hx}) {h_{t-1} \choose x_t} \bigg) \end{aligned} \hspace{5mm} \begin{aligned} &\text{Four gates} \hspace{0.5em} \begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \mathrm{tanh} \end{pmatrix} W {h_{t-1} \choose x_t} \\ &\text{call state} \hspace{0.5em} \begin{pmatrix} c_t \\ o \\ o_{t-1} + i \odot g \\ c_t = f \odot c_{t-1} + i \odot g \\ h_t = o \odot \mathrm{tanh}(c_t) \end{pmatrix} \end{aligned}
$$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Machine Learning

Spring Semester

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

 $i:$ Input gate, whether to write to cell

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

 $i:$ Input gate, whether to write to cell

 $f:$ Forget gate, whether to erase cell

 $x, h \in \mathbb{R}^d$ $g:$ Gate gate, how much to write to cell \dot{l} sigmoid \mathcal{X} $\begin{pmatrix} \dot f \ \dot o \ g \end{pmatrix} = \begin{pmatrix} \dot{\overline{\sigma}} \ \overline{\sigma} \ \overline{\sigma} \ \overline{\sigma} \ \overline{\sigma} \end{pmatrix} W \begin{pmatrix} h_{t-1} \ x_t \end{pmatrix}$ \int sigmoid \boldsymbol{h} W sigmoid 0 $c_t = f \odot c_{t-1} + i \odot g$ tanh \overline{g} $h_t = o \odot \tanh(c_t)$ $4d \times 2d$ 4d $4*d$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

 $i:$ Input gate, whether to write to cell

 $f:$ Forget gate, whether to erase cell

o: Output gate, how much to reveal cell

 $g:$ Gate gate, how much to write to cell

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Machine Learning Spring Semester (Sex) 52

 $x, h \in \mathbb{R}^d$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Long Short Term Memory (LSTM) : Gradient Flow

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f , no matrix multiply by W

$$
\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \\ c_t = f \odot c_{t-1} + i \odot g \\ h_t = o \odot \tanh(c_t)
$$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Long Short Term Memory (LSTM) : Gradient Flow

Uninterrupted gradient flow!

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Do LSTMs solve the vanishing gradient problem?

- n The LSTM architecture makes it easier for the RNN to preserve information over many timesteps
	- **q** e.g. if the $f = 1$ and the $i = 0$, then the information of that cell is preserved indefinitely.
	- □ By contrast, it's harder for vanilla RNN to learn a recurrent weight matrix Wh that preserves info in hidden state
- **EXTM** doesn't guarantee that there is no vanishing/exploding gradient, but it does provide an easier way for the model to learn long-distance dependencies

Summary

- **RNNs** allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Backward flow of gradients in RNN can explode or vanish.
- Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Better/simpler architectures are a hot topic of current research, as well as new paradigms for reasoning over sequences
- Better understanding (both theoretical and empirical) is needed.

