
Machine Learning Spring	Semester 1

Lecture 10

Recurrent Neural 

Networks



Machine Learning Spring	Semester 2

“Vanilla” Neural Network
one	to	one

Vanilla	Neural	Networks



Machine Learning Spring	Semester 3

Recurrent Neural Networks: Process Sequences
one	to	one one	to	many

e.g.	Image	Captioning
image	->	sequence	of	words



Machine Learning Spring	Semester 4

Recurrent Neural Networks: Process Sequences
one	to	one one	to	many many	to	one

e.g.	action	prediction
sequence	of	video	frames	->	action	class



Machine Learning Spring	Semester 5

Recurrent Neural Networks: Process Sequences
one	to	one one	to	many many	to	one many	to	many

e.g.	Video	Captioning
Sequence	of	video	frames	->	caption



Machine Learning Spring	Semester 6

Recurrent Neural Networks: Process Sequences
one	to	one one	to	many many	to	one many	to	many many	to	many

e.g.	Video	classification	on	frame	level



Machine Learning Spring	Semester 7

Recurrent Neural Network

𝑦

RNN

𝑥



Machine Learning Spring	Semester 8

Recurrent Neural Network

𝑦

RNN

𝑥

Key	idea:	RNNs	have	an
“internal	state”	that	is
updated	as	a	sequence	is
processed



Machine Learning Spring	Semester 9

Unrolled RNN

𝑦!

RNN

𝑥!

𝑦"

RNN

𝑥"

𝑦#

RNN

𝑥#

𝑦$

RNN

𝑥$

...



Machine Learning Spring	Semester 10

RNN hidden state update

n We	can	process	a	sequence	of	vectors	𝒙 by applying	
a	recurrence	formula	at	every	time	step: 𝑦

RNN

𝑥

new state

some	function
with	parameter	𝑊

old state input	vector	at
time	step	𝑡



Machine Learning Spring	Semester 11

Recurrent Neural Network

𝑦!

RNN

𝑥!

𝑦"

RNN

𝑥"

𝑦#

RNN

𝑥#

𝑦$

RNN

𝑥$

...
ℎ% ℎ! ℎ" ℎ#



Machine Learning Spring	Semester 12

Recurrent Neural Network

n We	can	process	a	sequence	of	vectors	𝒙 by applying	
a	recurrence	formula	at	every	time	step: 𝑦

RNN

𝑥Notice:	the	same	function	and	the	same	set
of	parameters	are	used	at	every	time	step.



Machine Learning Spring	Semester 13

(Vanilla) Recurrent Neural Network

𝑦

RNN

𝑥

The	state	consists	of	a	single	“hidden”	vector	𝒉:



Machine Learning Spring	Semester 14

RNN: Computational Graph

𝑥!

ℎ% 𝑓! ℎ!



Machine Learning Spring	Semester 15

RNN: Computational Graph

𝑥! 𝑥"

ℎ% 𝑓! ℎ! 𝑓! ℎ"



Machine Learning Spring	Semester 16

RNN: Computational Graph

𝑥! 𝑥" 𝑥#

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&



Machine Learning Spring	Semester 17

RNN: Computational Graph

𝑥! 𝑥" 𝑥#

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&

Re-use	the	same	weight	matrix	at	every	time-step



Machine Learning Spring	Semester 18

RNN: Computational Graph: Many to Many

𝑦!

𝑥!

𝑦"

𝑥"

𝑦#

𝑥#

𝑦&

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&



Machine Learning Spring	Semester 19

RNN: Computational Graph: Many to Many

𝑦!

𝑥!

𝑦"

𝑥"

𝑦#

𝑥#

𝑦&

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&

𝐿" 𝐿# 𝐿$ 𝐿%



Machine Learning Spring	Semester 20

RNN: Computational Graph: Many to Many

𝑦!

𝑥!

𝑦"

𝑥"

𝑦#

𝑥#

𝑦&

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&

𝐿" 𝐿# 𝐿$ 𝐿%

L



Machine Learning Spring	Semester 21

RNN: Computational Graph: Many to One

𝑥! 𝑥" 𝑥#

𝑦

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&



Machine Learning Spring	Semester 22

RNN: Computational Graph: One to Many

𝑦!

𝑥

𝑦" 𝑦# 𝑦&

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&



Machine Learning Spring	Semester 23

RNN: Computational Graph: One to Many

𝑦!

𝑥

𝑦"

?

𝑦#

?

𝑦&

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&

?



Machine Learning Spring	Semester 24

RNN: Computational Graph: One to Many

𝑦!

𝑥

𝑦"

𝑦!

𝑦#

𝑦"

𝑦&

...
ℎ#

ℎ% 𝑓! ℎ! 𝑓! ℎ" 𝑓! ℎ# ℎ&

𝑦!"#



Machine Learning Spring	Semester 25

Sequence to Sequence: Many-to-one + one-to-many

𝑥! 𝑥" 𝑥#

...
ℎ#ℎ$ 𝑓"% ℎ! 𝑓"% ℎ" 𝑓"% ℎ# ℎ&

Many	to	one:	Encode	input
sequence	in	a	single	vector

Sutskever et	al,	“Sequence	to	Sequence	Learning	with	Neural	Networks”,	NIPS	2014

...𝑓"' ℎ! 𝑓"' ℎ" 𝑓"'

One	to	many:	Produce	output
sequence	from	single	input	vector

𝑦! 𝑦"



Machine Learning Spring	Semester 26

Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

Example	training	sequence:	“hello”



Machine Learning Spring	Semester 27

Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

Example	training	sequence:	“hello”



Machine Learning Spring	Semester 28

Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

Example	training	sequence:	“hello”



Machine Learning Spring	Semester 29

Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

At	test-time	sample	characters
one	at	a	time,	feed	back	to
model



Machine Learning Spring	Semester 30

Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

At	test-time	sample	characters
one	at	a	time,	feed	back	to
model



Machine Learning Spring	Semester 31

Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

At	test-time	sample	characters
one	at	a	time,	feed	back	to
model



Machine Learning Spring	Semester 32

Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

At	test-time	sample	characters
one	at	a	time,	feed	back	to
model



Machine Learning Spring	Semester 33

Example: Character-level Language Model

Vocabulary:	[h,e,l,o]	

Matrix	multiply	with	a	one-hot	vector	just
extracts	a	column	from	the	weight	matrix.
We	often	put	a	separate	embedding	layer
between	input	and	hidden	layers.



Machine Learning Spring	Semester 34

Backpropagation through time (BPTT)
Forward	through	entire	sequence	to
compute	loss,	then	backward	through
entire	sequence	to	compute	gradient



Machine Learning Spring	Semester 35

RNN tradeoffs

n RNN	Advantages:	
q Can	process	any	length	input	
q Computation	for	step	𝑡 can	(in	theory)	use	information	from	many	
steps	back	

q Model	size	doesn’t	increase	for	longer	input	
q Same	weights	applied	on	every	timestep,	so	there	is	symmetry	in	how	
inputs	are	processed.	

n RNN	Disadvantages:	
q Recurrent	computation	is	slow	
q In	practice,	difficult	to	access	information	from	many	steps	back



Machine Learning Spring	Semester 36

Vanilla RNN Vanishing Gradients



Machine Learning Spring	Semester 37

Vanilla RNN Gradient Flow



Machine Learning Spring	Semester 38

Vanilla RNN Gradient Flow



Machine Learning Spring	Semester 39

Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:



Machine Learning Spring	Semester 40

Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:



Machine Learning Spring	Semester 41

Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:



Machine Learning Spring	Semester 42

Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:

Almost	always	< 1
Vanishing	gradients



Machine Learning Spring	Semester 43

Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:

Largest	singular	value	>	1: Exploding	gradients

Largest	singular	value	<	1: Vanishing	gradients



Machine Learning Spring	Semester 44

Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:

Largest	singular	value	>	1: Exploding	gradients

Largest	singular	value	<	1: Vanishing	gradients

Gradient	clipping:
Scale	gradient	if	its
norm	is	too	big



Machine Learning Spring	Semester 45

Vanilla RNN Gradient Flow
Gradients	over	multiple	time	steps:

Largest	singular	value	>	1: Exploding	gradients

Largest	singular	value	<	1: Vanishing	gradients Change RNN
architecture



Machine Learning Spring	Semester 46

Long Short Term Memory (LSTM)

Vanilla	RNN LSTM

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997



Machine Learning Spring	Semester 47

Long Short Term Memory (LSTM)

Vanilla	RNN LSTM

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

Four	gates

Cell	state

Hidden	state



Machine Learning Spring	Semester 48

Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊

𝑥

ℎ

sigmoid

sigmoid

sigmoid

tanh

𝑖

𝑓

𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!



Machine Learning Spring	Semester 49

Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊

𝑥

ℎ

sigmoid

sigmoid

sigmoid

tanh

𝑖

𝑓

𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
𝑔:	Gate	gate,	how	much	to	write	to	cell



Machine Learning Spring	Semester 50

Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊

𝑥

ℎ

sigmoid

sigmoid

sigmoid

tanh

𝑖

𝑓

𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
𝑔:	Gate	gate,	how	much	to	write	to	cell

𝑖:	Input	gate,	whether	to	write	to	cell



Machine Learning Spring	Semester 51

Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊

𝑥

ℎ

sigmoid

sigmoid

sigmoid

tanh

𝑖

𝑓

𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
𝑔:	Gate	gate,	how	much	to	write	to	cell

𝑖:	Input	gate,	whether	to	write	to	cell

𝑓:	Forget	gate,	whether	to	erase	cell



Machine Learning Spring	Semester 52

Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

𝑊

𝑥

ℎ

sigmoid

sigmoid

sigmoid

tanh

𝑖

𝑓

𝑜

𝑔

4𝑑 × 2𝑑 4𝑑 4 ∗ 𝑑

𝑥, ℎ ∈ ℝ!
𝑔:	Gate	gate,	how	much	to	write	to	cell

𝑖:	Input	gate,	whether	to	write	to	cell

𝑓:	Forget	gate,	whether	to	erase	cell

𝑜:	Output	gate,	how	much	to	reveal	cell



Machine Learning Spring	Semester 53

Long Short Term Memory (LSTM)

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997



Machine Learning Spring	Semester 54

Long Short Term Memory (LSTM) : Gradient Flow

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997

Backpropagation	from	𝑐# to
𝑐#$% only	elementwise
multiplication	by	𝑓,	no	matrix
multiply	by	𝑊



Machine Learning Spring	Semester 55

Long Short Term Memory (LSTM) : Gradient Flow

Hochreiter and	Schmidhuber,	“Long	Short	Term	Memory”,	Neural	Computation	1997



Machine Learning Spring	Semester 56

Do LSTMs solve the vanishing gradient problem?

n The	LSTM	architecture	makes	it	easier	for	the	RNN	to	preserve	
information	over	many	timesteps	
q e.g.	if	the	𝒇 = 𝟏 and	the	𝒊 = 𝟎,	then	the	information	of	that	cell	is	
preserved	indefinitely.

q By	contrast,	it’s	harder	for	vanilla	RNN	to	learn	a	recurrent	weight	
matrix	𝑊ℎ that	preserves	info	in	hidden	state	

n LSTM	doesn’t	guarantee	that	there	is	no	vanishing/exploding	
gradient,	but	it	does	provide	an	easier	way	for	the	model	to	
learn	long-distance	dependencies



Machine Learning Spring	Semester 57

Summary
n RNNs	allow	a	lot	of	flexibility	in	architecture	design
n Vanilla	RNNs	are	simple	but	don’t	work	very	well
n Backward	flow	of	gradients	in	RNN	can	explode	or	vanish.
n Exploding	is	controlled	with	gradient	clipping.	Vanishing	is	controlled	

with	additive	interactions	(LSTM)
n Common	to	use	LSTM	or	GRU:	their	additive	interactions	improve	

gradient	flow
n Better/simpler	architectures	are	a	hot	topic	of	current	research,	as	well	

as	new	paradigms	for	reasoning	over	sequences
n Better	understanding	(both	theoretical	and	empirical)	is	needed.


