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Bayes Decision Theory
p Bayesian decision theory is a fundamental decision-making 

approach under the probability framework.
l When all relevant probabilities were known, Bayesian decision 

theory makes optimal classification decisions based on the 
probabilities and costs of misclassifications.



p Bayesian decision theory is a fundamental decision-making 
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theory makes optimal classification decisions based on the 
probabilities and costs of misclassifications.

p Let us assume that there are    distinct class labels, that 
is,                        . Let     denote the cost of misclassifying 
a sample of class    as class    . Then, with the posterior 
probability            we can calculate the expected loss of 
classifying a sample    as class   , that is, the conditional 
risk of the sample   :

pOur task is to find a decision rule                that minimizes 
the overall risk:
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Bayes Decision Theory
p The overall risk        is minimized when the conditional risk                          

of each sample    is minimized.

p This leads to the Bayes decision rule: to minimize the 
overall risk, classify each sample as the class that minimizes 
the conditional risk

l where    is called the Bayes optimal classifier, and its 
associated overall risk        is called the Bayes risk.

l is the best performance that can be achieved by any 
classifiers, that is, the theoretically achievable upper bound of 
accuracy for any machine learning models.
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Bayes Decision Theory
p To be specific, if the objective is to minimize the 

misclassification rate, then the misclassification loss     can 
be written as

p and the conditional risk is

p Then, the Bayes optimal classifier that minimizes the 
misclassification rate is

l which classifies each sample    as the class that maximizes its 
posterior probability           .

=



Bayes Decision Theory
pWe can see that the Bayes decision rule relies on the 

posterior probability .

p However, it’s often difficult to obtain in practice. The task of 
machine learning is then to accurately estimate the 
posterior probability           from the training samples.

p Generally speaking, there are two strategies：
l discriminative models

l Given , predict    by estimating           directly.
l Decision trees, BP neural networks and support vector machines.

l generative models
l estimate the joint probability          first and then estimate
l For generative models, we must evaluate:
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Bayes Decision Theory
p For generative models, we must evaluate:

p According to Bayes’ theorem,
can be written as:

the prior probability 
represents the proportion 

of each class in the sample, 
which can be estimated by 
the frequency of each class 

in the training set

the evidence factor, 
which is independent of 
the class

the class-conditional 
probability, also known as 
the likelihood, of the 
sample    with respect to 
class 
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Maximum Likelihood Estimation
p A general strategy of estimating the class-conditional 

probability is to hypothesize a fixed form of probability 
distribution, and then estimate the distribution parameters 
using the training samples.

p let           denote class-condition probability of class    ，
l suppose            has a fixed form determined by a parameter 

vector    . Then, the task is to estimate     from a training 
set    .



Maximum Likelihood Estimation

p The training process of probabilistic models is the process 
of parameter estimation. There are two different ways of 
thinking about parameters:

l (The Frequentist school) Parameters have unknown but 
fixed values, and hence they can be determined by some 
approaches such as optimizing the likelihood function.

l (The Bayesian school) Parameters are unobserved random 
variables following some distribution, and hence we can 
assume prior distributions for the parameters and estimate 
posterior distribution from observed data.



Maximum Likelihood Estimation

p Let     denote the set of class   samples in the training 
set    , and further suppose the samples are i.i.d. samples. 
Then, the likelihood of     for a given parameter    is:

l Applying the MLE to    is about finding a parameter value    
that maximizes the likelihood                . Intuitively, the MLE 
aims to find a value of     that maximizes the “likelihood” that 
the data will present.



Maximum Likelihood Estimation

p Let     denote the set of class   samples in the training 
set    , and further suppose the samples are i.i.d. samples. 
Then, the likelihood of     for a given parameter    is:

l Applying the MLE to    is about finding a parameter value    
that maximizes the likelihood                . Intuitively, the MLE 
aims to find a value of     that maximizes the “likelihood” that 
the data will present.

p Since the product of a sequence can lead to underflow, we 
often use the log-likelihood instead:

p and the MLE of     is     :



Maximum Likelihood Estimation

p For example, suppose the features are continuous and the 
probability density function follows the Gaussian 
distribution                           , then the MLE of the 
parameters     and are

p In other words, the estimated mean of Gaussian 
distribution obtained by the MLE is the sample mean, and 
the estimated variance is the mean of                      .



Maximum Likelihood Estimation

p Such kind of parametric methods simplify the estimation of 
posterior probabilities, but the accuracy of estimation 
heavily relies on whether the hypothetical probability 
distribution matches the unknown ground-truth data 
distribution. In practice, a “guessed” probability distribution 
could incur misleading results. 
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Naïve Bayes Classifier
p The difficulty of estimating the posterior probability :           

it is not easy to calculate the class-conditional probability                               
from the training samples since            is the joint probability 
on all attributes.
l For example, 𝑑 binary attributes → 2𝑑 possible values,                  

2𝑑 >> the number of samples

p To avoid this, the Naïve Bayes classifier makes the “attribute 
conditional independence assumption”: for any class, assume 
all attributes are independent of each other.

p With the independence assumption, we have:

where    is the number of attributes.



Naïve Bayes Classifier



Naïve Bayes Classifier

Since        is the same for all classes, from the Bayes 
decision rule, we have

which is the formulation of the Naïve Bayes classifier.



Naïve Bayes Classifier
p To train a Naïve Bayes classifier, we compute the prior 

probability from the training set    and then compute 
the conditional probability          for each attribute.
l Let      denote a subset of    containing all samples of class  . 

Then, The prior probability can be estimated by

l For discrete attributes, let        denote a subset of     
containing all samples taking the value    on the   -th
attribute. Then, the conditional probability            can be 
estimated by

l For continuous features, suppose                           , where     
and     are, respectively, the mean and variance of the  -th
feature of class   . Then, we have



Laplace (add-1) Smoothing
p If	a	feature	value	has	never	appeared	together	with	a	particular	
class,	it	becomes	problematic	to	use	the	probability.	

p For	example,	given	a	testing	sample	with	sound	=	crisp,	the	
Naïve	Bayes	classifier	trained	on	the	watermelon	data	set	will	
predict	0.	The	classification	result	will	always	be	ripe	=	false	
regardless	of	the	values	of	other	features.

𝑃!"#$%|'"() =
0
8
= 0



Laplace (add-1) Smoothing

p To	avoid	“removing”	the	information	carried	by	other	features,	a	
common	choice	is	the	Laplace	smoothing.
l Let					denote	the	number	of	distinct	classes	in	the	training	

set					, denote	the	number	of	distinct	values	the		i-th
feature	can	take.	Then,	we	write	smoothed	version	of	prior	
probability	and	conditional	probability	as:

Why?



Text Classification

The	Bag	of	Words	Representation



Multinomial Distribution

for	non-negative	integers	𝑥*, … , 𝑥+.

Suppose	one	does	an	experiment	of	extracting 𝑛 balls	of	𝑘 different	colors	
from	a	bag,	replacing	the	extracted	balls	after	each	draw.	Balls	of	the	same	
color	are	equivalent.	Denote	the	variable	which	is	the	number	of	extracted	
balls	of	color	𝑖 (𝑖 = 1,… , 𝑘) as	𝑋#,	and	denote	as	𝑝_𝑖 the	probability	that	a	
given	extraction	will	be	in	color	𝑖.	

The	probability	mass	function	of	this	multinomial	distribution	is:



Generative Model for Naive Bayes

𝑃 𝑥! 𝑐)



Text Classification

Consider	a	naive	Bayes	model	with	the	classes	positive	(+)	and	negative	(-)
and	the	following	model	parameters:

Note	that	this	is	just	the	likelihood	part	of	the	naive	Bayes	model.	



Text Classification

To apply the naive Bayes classifier to text, we need to consider 
word positions, by simply walking an index through every word 
position in the document:

Naive Bayes is a linear classifiers.

Naive Bayes calculations are done in log space, to avoid 
underflow and increase speed



Training the Naive Bayes Classifier

Let𝑁! be the number of documents in our training data with class 𝑐
and 𝑁,-! be the total number of documents. Then:



Text Classification

Priors:
𝑃 𝑐 =?
𝑃 𝑗 =?

Conditional Probabilities: 
𝑃(𝐶ℎ𝑖𝑛𝑒𝑠𝑒|𝑐) =?
𝑃(𝑇𝑜𝑘𝑦𝑜|𝑐) =?
𝑃(𝐽𝑎𝑝𝑎𝑛|𝑐) =?
𝑃(𝐶ℎ𝑖𝑛𝑒𝑠𝑒|𝑗) =?
𝑃(𝑇𝑜𝑘𝑦𝑜|𝑗) =?
𝑃(𝐽𝑎𝑝𝑎𝑛|𝑗) =?

Choosing a class: 

𝑃 𝑐 𝑑5 =?
𝑃 𝑗 𝑑5 =?



Text Classification

Priors:

𝑃 𝑐 =
3 + 1
4 + 2

=
2
3

𝑃 𝑗 =
1 + 1
4 + 2

=
1
3
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Text Classification

Choosing a class: 

𝑃 𝑐 𝑑5 ∝
2
3
∗

3
7

"
∗
1
14

∗
1
14

≈ 0.00027

𝑃 𝑗 𝑑5 ∝
1
3
∗

2
9

"
∗
2
9
∗
2
9
≈ 0.00018
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Dealing with Hidden Variables

Counts

Parameters
,

,

Hidden variables 
𝑐

Observed variables: 𝑥



Gaussian Mixture-Model



Gaussian Mixture-Model

Hidden Variable？

PDF of Guassian:

Model Parameters？



(Soft) EM Algorithm

The EM algorithm seeks to find the maximum likelihood estimate of the 

marginal likelihood by iteratively applying these two steps:

p E-step (Expectation): infer the current conditional 
distribution    based on     , and compute the 
expectation of the log-likelihood function with respect to   :

pM-step (Maximization): find the parameters that maximize 
the expected log-likelihood, that is,



Gaussian Mixture-Model
The likelihood function

This E step corresponds with setting up this function for Q:



Gaussian Mixture-Model

M step









Relationships between MLE and Q-
function

When the outputs are hidden variables, and if 𝑧 is known, 
we can turn EM algorithm to MLE in supervised settings.
• supposed that each 𝒙! has a supervised label 𝑦!
• defining 

which is exactly the maximum log-likelihood training objective. 



Graphical interpretation



Convergence
EM is guaranteed to converge to a point with zero gradient.

WHY?



Convergence



Convergence
Equivalently we may write,

and for convenience define,

so that

Additionally, observe that,



Convergence



Graphical interpretation



Hidden Variable？

Model Parameters？







(Hard) EM Algorithm


