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Bayes Decision Theory

1 Bayesian decision theory is a fundamental decision-making
approach under the probability framework.
® When all relevant probabilities were known, Bayesian decision

theory makes optimal classification decisions based on the
probabilities and costs of misclassifications.



Bayes Decision Theory

1 Bayesian decision theory is a fundamental decision-making
approach under the probability framework.
® When all relevant probabilities were known, Bayesian decision

theory makes optimal classification decisions based on the
probabilities and costs of misclassifications.

] Let us assume that there are N distinct class labels, that
is,y ={c,c,...,cn}. Let \; denote the cost of misclassifying
a sample of class ¢jas class ¢; . Then, with the posterior
probability P(¢; | ) we can calculate the expected loss of
classifying a sample X as class¢;, that is, the conditional
risk of the sample X: N

R(ci|x) =) AjP(c; | %) (7.1)

j=1

] Our task is to find a decision rule j, - X — Y that minimizes

the overall risk:
R(h) = E; [R(h(x) | x)] (7.2)



Bayes Decision Theory

] The overall risk R(h) is minimized when the conditional risk
R(h(x) | x) of each sample X is minimized.



Bayes Decision Theory

] The overall risk R(h) is minimized when the conditional risk
R(h(x) | x) of each sample x is minimized.

1 This leads to the Bayes decision rule: to minimize the
overall risk, classify each sample as the class that minimizes
the conditional risk R(c | x)

h*(x) = argmin R(c | x)

cecy

® where h* is called the Bayes optimal classifier, and its
associated overall risk R(h*)is called the Bayes risk.

® 1- R(h")is the best performance that can be achieved by any
classifiers, that is, the theoretically achievable upper bound of
accuracy for any machine learning models.



Bayes Decision Theory

] To be specific, if the objective is to minimize the
misclassification rate, then the misclassification loss A;; can
be written as _{ 0, if i=j;

“J 1, otherwise,



Bayes Decision Theory

] To be specific, if the objective is to minimize the
misclassification rate, then the misclassification loss *ij can
be written as ={ 0, if i=j;

“J 1, otherwise,

] and the conditional risk is
R(c|x)=1- P(c|x)



Bayes Decision Theory

] To be specific, if the objective is to minimize the
misclassification rate, then the misclassification loss \;; can

be written as ={ 0. if i=j:
)\i,j

1, otherwise,
] and the conditional risk is

R(c|x)=1- P(c|x)

[0 Then, the Bayes optimal classifier that minimizes the
misclassification rate is

h*(x) = argmax P(c | )
cecy

® which classifies each sample x as the class that maximizes its
posterior probabilityp(c | x)-



Bayes Decision Theory

] We can see that the Bayes decision rule relies on the
posterior probability p(c | x) .

1 However, it's often difficult to obtain in practice. The task of
machine learning is then to accurately estimate the
posterior probability P(c | x) from the training samples.

] Generally speaking, there are two strategies :

® discriminative models
® Given X, predict C by estimating P(c | x) directly.
® Decision trees, BP neural networks and support vector machines.
® generative models
® estimate the joint probability P(x, c) first and then estimate P(c | x)
® For generative models, we must evaluate:

P(c|x) = Pf()}(i’(;)




Bayes Decision Theory

] For generative models, we must evaluate:
P(x,c)

P(c|x) = Px)




Bayes Decision Theory

] For generative models, we must evaluate:
P(x,c)

P(c|x) = P(x)

O According to Bayes’ theorem,
P(c | x) can be written as:

P(c)P(x | ¢)
P(x

P(c|x) =



Bayes Decision Theory

] For generative models, we must evaluate:
P(x,c)

P(e|%) = “prs

O According to Bayes’ theorem,
P(c | x) can be written as:

Pc)P(x | c)

N———"

Ple| x) ==
the prior probability /

represents the proportion
of each class in the sample,
which can be estimated by
the frequency of each class
in the training set




Bayes Decision Theory

] For generative models, we must evaluate:
P(x,c)
P(x)

P(c|x) =

O According to Bayes’ theorem,
P(c | x) can be written as:

Ple|x) =0
the prior probability / W

represents the proportion the evidence factor

of each class in the sample .
: : ! which is independent of
which can be estimated by the class

the frequency of each class

in the training set




Bayes Decision Theory

] For generative models, we must evaluate:

P(c|x) =

O According to Bayes’ theorem,
P(c | x) can be written as:

P(x,¢)
P(x)

the class-conditional
probability, also known as
the likelihood, of the
sampleX with respect to
class C

P(c)P(x | c)

P(c|x) =
the prior probability /

represents the proportion
of each class in the sample,
which can be estimated by
the frequency of each class
in the training set

P(x)

N

the evidence factor,
which is independent of
the class
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Maximum Likelihood Estimation

] A general strategy of estimating the class-conditional
probability is to hypothesize a fixed form of probability
distribution, and then estimate the distribution parameters
using the training samples.
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[l let P(x|c) denote class-condition probability of class ¢ ,

® suppose P(x | ¢) has a fixed form determined by a parameter
vector 0.. Then, the task is to estimate 6. from a training

set D,



Maximum Likelihood Estimation

] The training process of probabilistic models is the process
of parameter estimation. There are two different ways of
thinking about parameters:

® (The Frequentist school) Parameters have unknown but
fixed values, and hence they can be determined by some
approaches such as optimizing the likelihood function.

® (The Bayesian school) Parameters are unobserved random
variables following some distribution, and hence we can
assume prior distributions for the parameters and estimate
posterior distribution from observed data.



Maximum Likelihood Estimation

] Let D. denote the set of class csamples in the training

set p., and further suppose the samples are j.i.d. samples.
Then, the likelihood of D. for a given parameter 6. is:

P(D.|6.) = [] P(x|6.)
x€eD,
® Applying the MLE to 0.is about finding a parameter value 0.
that maximizes the likelihood P(De | 0¢) . Intuitively, the MLE

aims to find a value of @_.that maximizes the “/ikelihood” that
the data will present.



Maximum Likelihood Estimation

] Let p, denote the set of class ¢samples in the training

set p, and further suppose the samples are i.i.d. samples.
Then, the likelihood of , for a given parameter g is:

P(Dc‘ec>: HP(X‘OC)

x€D.
® Applying the MLE to 6. ifs. about finding a parameter value ¢,
that maximizes the likelihood P(D. | 6..) . Intuitively, the ML

aims to find a value of §_that maximizes the "“likelihood” that
the data will present.

] Since the I|1:)roduct of a sequence can lead to underflow, we
often use the log-likelihood instead:

LL(HC) = log P(Dc ‘ 00)
=) logP(x|8,)

xeD.

] and the MLE of . is 6

C [ ]

0. = argmax LL(6.)
0.



Maximum Likelihood Estimation

] For example, suppose the features are continuous and the
probability density function follows the Gaussian
distribution p(x | ¢) ~ N(uc, %), then the MLE of the
parameters K¢ and o are

Zx

#e 1D,
xeD,

fre)(x — fic)*

€D,

] In other words, the estimated mean of Gaussian
distribution obtained by the MLE is the sample mean, and
the estimated variance is the mean of (x — fi.)(x — f1.)"



Maximum Likelihood Estimation

] Such kind of parametric methods simplify the estimation of
posterior probabilities, but the accuracy of estimation
heavily relies on whether the hypothetical probability
distribution matches the unknown ground-truth data
distribution. In practice, a "guessed” probability distribution

could incur misleading results.

q(x)
A
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Naive Bayes Classifier

O The difficulty of estimating the posterior probability P(c|x) :
it is not easy to calculate the class-conditional probability P(x | c)
from the training samples since P(x | ¢) is the joint probability
on all attributes.

® For example, d binary attributes — 2¢ possible values,
24 >> the number of samples

] To avoid this, the Naive Bayes classifier makes the “attribute
conditional independence assumption”: for any class, assume
all attributes are independent of each other.

[0 With the independence assumption, we have:

P(C)P(X|C)_P(C) : T; | c
P(x) _P(X)EP( 1

P(c|x) =

where d is the number of attributes.



Naive Bayes Classifier




Naive Bayes Classifier

P(z; | )

P(c|x) =

P()P(x|c) _ P(o) 1
P(x P(x) -

1=1

Since P(z) is the same for all classes, from the Bayes
decision rule, we have

hnp(x) = argmax P(c) HP(IZ | ¢)

<y i=1

which is the formulation of the Naive Bayes classifier.



Naive Bayes Classifier

O To train a Naive Bayes classifier, we compute the prior
probability P(c) from the training set Dand then compute
the conditional probability P(z; | ¢) for each attribute.

® Let D. denote a subset of D containing all samples of class ¢
Then, The prior probability can be estimated by
_ D

P(c) = D

® For discrete attributes, let D.., denote a subset of D.
containing all samples taking the value x; on the i-th
attribute. Then, the conditional probability P(z; | c)can be
estimated by D.,.|

P(x; | c) = —=
| D|

® For continuous features, suppose p(zil|c) ~ N(pei,02;) , where fie
and o, are, respectively, the mean and variance of the i-th
feature of class c¢. Then, we have
1 (5137, — :uc,i)Q
eXp(_ 2 )
V270, 20.;

P(z;|c) =



Laplace (add-1) Smoothing

[ If a feature value has never appeared together with a particular
class, it becomes problematic to use the probability.

[J For example, given a testing sample with sound = crisp, the

Naive Bayes classifier trained on the watermelon data set will

predict 0. The classification result will always be ripe = false

regardless of the values of other features.

P crisp|true —

e}
I

1D color root sound texture umbilicus surface ripe
1 green curly muffled clear hollow hard true
2 dark curly dull clear hollow hard true
3 dark curly muffled clear hollow hard true
4 green curly dull clear hollow hard true
5 light curly muffled clear hollow hard true
6 green slightly curly muffled clear slightly hollow soft true
7 dark slightly curly muffled slightly blurry slightly hollow soft true
8 dark slightly curly muffled clear slightly hollow hard true
9 dark slightly curly dull slightly blurry slightly hollow hard false
10 green straight crisp clear flat soft false
11 light straight crisp blurry flat hard false
12 light curly muffled blurry flat soft false
13 green slightly curly muffled slightly blurry hollow hard false
14 light slightly curly dull slightly blurry hollow hard false
15 dark slightly curly muffled clear slightly hollow soft false
16 light curly muffled blurry flat hard false
17 green curly dull slightly blurry slightly hollow hard false




Laplace (add-1) Smoothing

[ To avoid “removing” the information carried by other features, a
common choice is the Laplace smoothing.

® Let N denote the number of distinct classes in the training
set D, N, denote the number of distinct values the i-th
feature can take. Then, we write smoothed version of prior
probability and conditional probability as:

.« |Del+1
Ple) = |ID|+ N’
Why?
Pa; | o) = et

|Dcl I Nz’



Text Classification

The Bag of Words Representation

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. l've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

’\
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Multinomial Distribution

Suppose one does an experiment of extracting n balls of k different colors
from a bag, replacing the extracted balls after each draw. Balls of the same
color are equivalent. Denote the variable which is the number of extracted
ballsof colori (i = 1,...,k) as X;, and denote as p_i the probability that a
given extraction will be in color i.

The probability mass function of this multinomial distribution is:

f(zy,...,xp;n,p1,...,pk) = Pr(X; =27 and ... and X = x;)

X Tl k .
Py X X Pt when ) . ;z; =n

L0 otherwise,

for non-negative integers x4, ..., X.



Generative Model for Naive Bayes

P(x; | c)

:




Text Classification

Consider a naive Bayes model with the classes positive (+) and negative (-)
and the following model parameters:

w  P(wl+) P(w|-)
I 0.1 0.2
love 0.1 0.001
this 0.01  0.01
fun 0.05  0.005
film 0.1 0.1

P(*I love this fun film”|+) = 0.1 x 0.1 x 0.01 x 0.05 x 0.1 = 0.0000005
P(“I love this fun film”|—) = 0.2 x 0.001 x 0.01 x 0.005 x 0.1 = .0000000010

Note that this is just the likelihood part of the naive Bayes model.



Text Classification

To apply the naive Bayes classifier to text, we need to consider
word positions, by simply walking an index through every word
position in the document:

positions < all word positions in test document

cyg = argmaxP(c H P(wjlc)

ceC IE positions

Naive Bayes calculations are done in log space, to avoid
underflow and increase speed

cyg = argmaxlogP(c)+ Z log P(wj|c)

ceC [E positions

Naive Bayes is a linear classifiers.



Training the Naive Bayes Classifier

Let N. be the number of documents in our training data with class ¢
and N,,. be the total number of documents. Then:

A N,
Pc) =
Nioc
. count (w;,c)
P(wi|c
(wile) > ey count(w,c)
. count (wj,c) + 1 count (w;,c) + 1

P(w,-|c) - ZWEV (count(W,C)-l—l) - (Zwevcoum‘(W,C)) ‘|—’V|




Text Classification

I 3 S -~

Training

Test

Priors:
P(c) =7
P(j) =?

1
2
3
4
5

Chinese Beijing Chinese

Chinese Chinese Shanghai C
Chinese Macao C
Tokyo Japan Chinese j
Chinese Chinese Chinese Tokyo Japan ?

Conditional Probabilities: Choosing a class:
P(Chinese|c) =?

P(Tokyo|c) =? P(c|d5) =?
P(Japan|c) =? P(jld5) =?
P(Chinese|j) = B | count(w,c)+1
P(Tokyolj) =? Plwle)= count(c)+1V |

P(Japanlj) =



Text Classification

Priors:

3+1
P(C)=—=§

N
+ 4|+
(\O)

p—

1
P' = —_—= -
2 4+4+2 3



Text Classification

Conditional Probabilities:

P(Chinese|c) = (5+1)/(8+6)=6/14=3/7
P(Tokyolc) = (0+1)/(8+6)=1/14
P(Japan|c) = (0+1)/(8+6)=1/14
P(Chineselj) = (1+1)/(3+6) = 2/9
P(Tokyol|j) = (1+1)/(3+6)=2/9
P(Japan|j) = (1+41)/(3+6)=2/9



Text Classification

Choosing a class:

31

~ 0. 27
*1g *1g ~ 0000

P(c|d5) « % % (;)

3

P(j|d5) L (2) ‘2 0.00018
X— *x |— *x — x— =~ ().
U 3 9 9 9O
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Dealing with Hidden Variables

Counts
|DC| 7 |DC,$1‘

Parameters » Hidden variables

P(c), P(x; | ¢ C

Observed variables: x



Gaussian Mixture-Model
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Gaussian Mixture-Model
P(Z;=1)=7 andP(Z; =2) =1 =1—-7

X | (ZZ — 1) NNd(“‘hEl) X; l (Zz = 2) NNd([.Lz,Ez):

GMM with 2 gaussians

01 . . . . .
Hidden Variable? 45! \ i

Model Parameters?

L
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1 —%(x—u,.)Tz;l(x—u,-)

e
(27[)d/2 | Zj |1/2

PDF of Guassian:



(Soft) EM Algorithm

The EM algorithm seeks to find the maximum likelihood estimate of the

marginal likelihood by iteratively applying these two steps:

] E-step (Expectation): infer the current conditional
distribution P(Z | X,0") based on ©f, and compute the

expectation of the log-likelihood function with respect to Z:
Q(@ | @t) — ]Ez|X,@tLL(@ ‘ )(7 Z)

[0 M-step (Maximization): find the parameters that maximize
the expected log-likelihood, that is,

O = argmax Q(O | )
®



Gaussian Mixture-Model

The likelihood function

L(0;x,2) = p(x,2 | 0) = | [ ]I [F(xi5 5, 25) 71577,

This E step corresponds with setting up this function for Q:

Q6 09) = By o llog L(6;%,2)
= EZlX:x;G(t) [log H L(O; Xis Zz)]
1=1

= Egx 0 ) log L(6;%i, Z;)]
1=1

EZi|Xz-=;ci;9(t) [108 L(H; Xi, Zi )]
1

I

7

S |

|
NE

P(Z; = j| X; = x;;09) log L(6;; %, §)

~

I
e
.

I
—



Gaussian Mixture-Model

M step

T(t+1) = arg max Q(e | B(t))

(ngl),thH)) = argmax Q(0 | H(t))
I-“lazl



Example: GMM

;Clustering with GMM (k=3, init=random, cov=spherical, iter=0)
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Example: GMM

Llustering with GMM (k=3, init=random, cov=spherical, iter=10)
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Example: GMM

Llustering with GMM (k=3, init=random, cov=spherical, iter=19)




Relationships between MLE and Q-
function

When the outputs are hidden variables, and if z is known,
we can turn EM algorithm to MLE in supervised settings.

« supposed that each x; has a supervised label y;

* defining .
if 2 = y;

P(z|@;,0") = {

0 otherwise

QR(e 0" = ZZP(z | ®;,0") log P(x;, 2 | ©)

1=1 ze€Z

N
= log P(z;,y: | ©)

1=1

which is exactly the maximum log-likelihood training objective.



Graphical interpretation

L(9n+1)

(011160
L(0,) = 1(6.]6,)

L(9)
1(6]65)

L(6) 1(016n)

Hn en—}-l =0

Figure 2: Graphical interpretation of a single iteration of the EM algorithm:
The function [(0|6,) is upper-bounded by the likelihood function L(#). The
functions are equal at § = 0,,. The EM algorithm chooses 6,,,1 as the value of 6
for which [(0|60,,) is a maximum. Since L(0) > [(0|6,) increasing [(0|6,,) ensures
that the value of the likelihood function L(#) is increased at each step.



Convergence

EM is guaranteed to converge to a point with zero gradient.

L(0) — L(6n) = In) P(X|z,0)P(z/f) —InP(X|6n)

P(z|X, 0n)
P(z|X, 6,)

= In) P(X|z,0)P(zl6) - — InP(X|6,)

= Y PX,6,) (P(EZIQZZ)W)) ~ I P(X[6,)

Vv

Y P(alX, 6,) In (P(;f(lzi;;)ziz)m) ~ InP(X|6,)

) P(X|z,0)P(z|0)
— ZZ:P(ZIX, 0r) In (p(zp(, on)P(X|9n))

WHY? »

1>

A(616n)



Convergence

Theorem 2 (Jensen’s inequality) Let f be a convex function defined on an
interval I. If x1,%a,...,&n € I and A1, A2, ..., Ay >0 with Y 1, A =1,

Af(z1) + (1 = A) f(z2)

f()\ﬂ?l + (1 — )\)xz)

° P j =
a 1 Ax1 + (1 — /\).’L'z Z2 b

Figure 1: f is convez on [a,b] if f(Ax1 + (1 — N)z2) < Af(z1) + (1 — A) f(z2)
Vzi,z2 € [a,b], A€ ]0,1].

I I
[ &




Convergence

Equivalently we may write,
L(6) > L(6,) + A(6)6,)

and for convenience define,
1(6]6) = L(6r) + A(6]60)

so that
L(9) > 1(6]6,).

Additionally, observe that,

1(0,10,) = L(6,) + A(0,)6,)
P(X|z,0,,)P(z|60r)

= L(0n)+ ) _P(zX,0,)In P(2[X, 0,)P(X|0,)

P(X, z|6,)
P(X, z|6,)

= L(6n)+ Y _P(2X,6,)In1

= L(6n)+ Y _P(zX,6,)In

= L(6,),



Convergence

Ont1 = argmax{l(0]0,)}

P(X|z,0)P(z|6
= arg meax {L(@n) + ZP(lea Hn) In P()((|9L)p)(z|()(! e)n) }

Now drop terms which are constant w.r.t. 6

= argmax {Z P(z|X, 6,) InP(X]|z, O)P(z|9)}

= argmax {zz: P(z|X, 6,) InP(X, z|0)}

= arg meax {EZ|X,0n {InP(X, Z|9)}}

QO] 0") =Ezxe:LL(O | X,Z)




Graphical interpretation

L(9n+1)

(011160
L(0,) = 1(6.]6,)

L(9)
1(6]65)

L(6) 1(016n)

Hn en—}-l =0

Figure 2: Graphical interpretation of a single iteration of the EM algorithm:
The function [(0|6,) is upper-bounded by the likelihood function L(#). The
functions are equal at § = 0,,. The EM algorithm chooses 6,,,1 as the value of 6
for which [(0|60,,) is a maximum. Since L(0) > [(0|6,) increasing [(0|6,,) ensures
that the value of the likelihood function L(#) is increased at each step.



Example: K-Means

- Clustering with K-Means (k=3, iter=0)

Hidden Variable?

-2 -
Model Parameters?

—4 -



Example: K-Means

~ Clustering with K-Means (k=3, iter=1)




K-Means

Example

3, iter=5)

~ Clustering with K-Means (k
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(Hard) EM Algorithm

repeat
Expectation step:

7' < arg max,, log P(X, Z|©');
Maximisation step:

O'*! + argmaxg log P(X,Z!|©);
t$—t+ 1;
until CONVERGE(Z, ©);




