Chapter 13 Ensemble Learning

Machine Learning Spring Semester (Sexternal Contract of Spring Semester 1

Ensemble methods

Machine learning competition with a \$1 million prize

Leaderboard

Display top $20 \times$ leaders.

Machine Learning Spring Semester (1) 2

Bias-Variance Decomposition

Recall, we treat predictions y at a query x as a random variable (where the randomness comes from the choice of dataset), y_{\star} is the optimal deterministic prediction, t is a random target sampled from the true conditional $p(t|\mathbf{x})$.

$$
\mathbb{E}[(y-t)^2] = (y_\star - \mathbb{E}[y])^2 + \underbrace{\text{Var}(y)}_{\text{bias}} + \underbrace{\text{Var}(t)}_{\text{variance}}
$$

Bias/variance decomposes the expected loss into three terms:

- \triangleright bias: how wrong the expected prediction is (corresponds to underfitting)
- variance: the amount of variability in the predictions (corresponds) to overfitting)
- Bayes error: the inherent unpredictability of the targets

Fighting the bias-variance tradeoff

• Simple (a.k.a. weak) learners are good

– e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)

- Low variance, don't usually overfit
- **• Simple (a.k.a. weak) learners are bad**
	- High bias, can't solve hard learning problems
- Can we make weak learners always good??? – **No!!!**
	- **But often yes…**

Ensemble Methods

- Instead of learning a single (weak) classifier, learn **many weak classifiers** that are **good at different parts of the input space**
- **Output class:** (Weighted) vote of each classifier
	- Classifiers that are most "sure" will vote with more conviction
	- Classifiers will be most "sure" about a particular part of the space
	- On average, do better than single classifier!
- **But how do you ???**
	- force classifiers to learn about different parts of the input space?
	- weigh the votes of different classifiers?

only one training set where do multiple models come from?

Ensemble Method 1

Bagging!!! For low bias but high variance models

Bias: unchanged, since the averaged prediction has the same expectation

$$
\mathbb{E}[y] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m} y_i\right] = \mathbb{E}[y_i]
$$

• Variance: reduced, since we're averaging over independent samples

$$
Var[y] = Var\left[\frac{1}{m}\sum_{i=1}^{m} y_i\right] = \frac{1}{m^2}\sum_{i=1}^{m} Var[y_i] = \frac{1}{m} Var[y_i].
$$

Machine Learning Spring Semester ($\binom{1}{4}$ 6

Ensemble Method 2

For high bias but low variance models

Sequentially generate weak learners to handle wrongly classified samples, hence reduce the bias. Boosting!!!

Ensemble Learning

- \Box Individual and Ensemble
- \Box Bagging and Random Forest
- \Box Boosting
	- Adaboost
- \Box Combination Strategies
	- **•** Averaging
	- Voting
	- Combining by Learning
- \blacksquare Diversity
	- **Error-Ambiguity Decomposition**
	- Diversity Measures
	- Diversity Generation

 \Box Ensemble learning trains and combines multiple learners to solve a learning problem.

 \Box Taking binary classification as an example, suppose three classifiers are applied to three testing samples, where \sqrt indicate the correct classifications, \times indicate the incorrect classifications. The classification of ensemble learning is made by voting.

(a) Ensemble helps.

(b) Ensemble doesn't help.

(c) Ensemble hurts.

\Box Individual learners should be "accurate and diverse".

 \Box Consider binary classification, the error rate of each base learner is

 $P(h_i(\boldsymbol{x}) \neq f(\boldsymbol{x})) = \epsilon$

 \Box Suppose ensemble learning combines the T base learners by voting, then the ensemble will make an correct classification if more than half of the base learners are correct:

$$
F(\bm{x}) = \text{sign}\!\left(\sum_{i=1}^T h_i(\bm{x})\right)
$$

 \Box Assuming the error rates of base learners are independent, then, from *Hoeffding's inequality*, the error rate of the ensemble is

$$
P\left(F(\boldsymbol{x}) \neq f(\boldsymbol{x})\right) = \sum_{k=0}^{\lfloor T/2 \rfloor} \binom{T}{k} (1 - \epsilon)^k \epsilon^{T-k}
$$

$$
\leq \exp\left(-\frac{1}{2}T\left(1 - 2\epsilon\right)^2\right)
$$

 \Box The above equation shows that as the number of base learners in the ensemble increases, the error rate decreases exponentially and eventually approaches zero.

- \Box The above analysis made a critical assumption that the error rates of base learners are independent.
- \Box This assumption is invalid in practice since the learners are trained to solve the same problem and thus cannot be independent.
- \Box In fact, accuracy and diversity are two conflicted properties of individual learners.
- \square The generation and combination of "accurate and diverse" individual learners are the fundamental issues in ensemble learning.

Ensemble Learning

D Individual and Ensemble

□ Bagging and Random Forest

- \blacksquare Boosting
	- **Adaboost**
- **D** Combination Strategies
	- **•** Averaging
	- **•** Voting
	- **Combining by Learning**
- **D** Diversity
	- **Error-Ambiguity Decomposition**
	- **Diversity Measures**
	- **Diversity Generation**

Bagging and Random Forest

Machine Learning, 24, 123–140 (1996) © 1996 Kluwer Academic Publishers, Boston, Manufactured in The Netherlands.

Bagging Predictors

LEO BREIMAN Statistics Department, University of California, Berkeley, CA 94720

Editor: Ross Quinlan

Abstract. Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.

Keywords: Aggregation, Bootstrap, Averaging, Combining

leo@stat.berkeley.edu

Bagging

\Box Bagging = Bootstrap AGGregatING

Algorithm 8.2 Bagging.

Input: Training set: $D = \{ (x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m) \};$ Base learning algorithm \mathfrak{L} ; Number of training rounds T .

Process:

1: for $t = 1, 2, ..., T$ do 2: $h_t = \mathfrak{L}(D, \mathcal{D}_{bs}).$ $3:$ end for **Output:** $H(x) = \arg \max_{y \in \mathcal{Y}} \sum_{t=1}^{T} \mathbb{I}(h_t(x) = y).$

The bootstrap is one of the most important ideas in all of statistics!

Bagging

Bagging

Random Forests

 \Box Random Forests = bagged decision trees, with one extra trick to decorrelate the predictions

- \triangleright When choosing each node of the decision tree, choose a random set of input features, and only consider splits on those features
- \Box Random forests are probably the best black-box machine learning algorithm — they often work well with no tuning whatsoever.
	- \triangleright one of the most widely used algorithms in Kaggle competitions

Bagging Summary

- Bagging reduces overfitting by averaging predictions.
- \Box Used in most competition winners
	- \triangleright Even if a single model is great, a small ensemble usually helps.
- \Box Limitations:
	- \triangleright Does not reduce bias in case of squared error.
	- \triangleright There is still correlation between classifiers.
		- \triangleright Random forest solution: Add more randomness.
	- \triangleright Naive mixture (all members weighted equally).
- \Box Boosting, up next, can be viewed as an approach to weighted ensembling that strongly decorrelates ensemble members.

Ensemble Learning

- **D** Individual and Ensemble
- **□** Bagging and Random Forest
- \square Boosting
	- Adaboost
- **D** Combination Strategies
	- **•** Averaging
	- **•** Voting
	- **Combining by Learning**
- **D** Diversity
	- **Error-Ambiguity Decomposition**
	- **Diversity Measures**
	- **Diversity Generation**

Boosting

Idea: given a weak learner, run it multiple times on weighted training set, then let the learned classifiers vote

- \Box The learners are generated sequentially
- \Box Adjust the distribution of the training samples

$$
\left\{x \rightarrow \text{sign}(H(x)) \mid H(x) = \sum_{t=1}^T \alpha_t h_t(x) \text{ for some } \alpha_1, \ldots, \alpha_T \geq 0 \text{ and } h_1, \ldots, h_T \in \mathcal{H}, T \geq 1 \right\}
$$

where H is the weak predictor class (e.g., decision stumps).

Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999. (In Japanese, translation by Naoki Abe.)

A Short Introduction to Boosting

Yoay Freund Robert E. Schapire $AT&T$ Labs – Research **Shannon Laboratory** 180 Park Avenue Florham Park, NJ 07932 USA www.research.att.com/ \sim {yoav, schapire} {yoav, schapire}@research.att.com

Abstract

Boosting is a general method for improving the accuracy of any given learning algorithm. This short overview paper introduces the boosting algorithm AdaBoost, and explains the underlying theory of boosting, including an explanation of why boosting often does not suffer from overfitting as well as boosting's relationship to support-vector machines. Some examples of recent applications of boosting are also described.

\square Weight each training example by how incorrectly it was classified

 \Box A strength for each hypothesis

Input: Training set $D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m)\};$ Base learner £: Number of training rounds T .

Process:

\n- \n
$$
\mathcal{D}_1(\mathbf{x}) = \frac{1}{m}; \quad \longrightarrow \text{ initially the uniform distribution}
$$
\n
\n- \n $\mathcal{D}_1(\mathbf{x}) = \frac{1}{m}; \quad \mathcal{D}_t(\mathbf{x}) = \frac{1}{m}$ \n
\n- \n $\mathcal{D}_t(\mathbf{x}) = \frac{1}{m} \left(\frac{1}{m} \mathbf{x} \right)$ \n
\n- \n $\mathcal{D}_t = \frac{1}{m} \left(\frac{1 - \epsilon_t}{\epsilon} \right)$ \n
\n- \n $\mathcal{D}_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon} \right)$ \n
\n- \n $\mathcal{D}_{t+1}(\mathbf{x}) = \frac{\mathcal{D}_t(\mathbf{x})}{\mathcal{Z}_t} \times \begin{cases} \exp(-\alpha_t), & \text{if } h_t(\mathbf{x}) = f(\mathbf{x}) \text{;} \\ \exp(\alpha_t), & \text{if } h_t(\mathbf{x}) \neq f(\mathbf{x}) \text{;} \end{cases}$ \n
\n- \n $\mathcal{D}_{t+1}(\mathbf{x}) = \frac{\mathcal{D}_t(\mathbf{x}) \exp(-\alpha_t f(\mathbf{x}) h_t(\mathbf{x}))}{\mathcal{Z}_t}; \quad \longrightarrow \text{normalization factor}$ \n
\n

8: end for **Output:** $F(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$. 算法 8.1 (AdaBoost)

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}\,$, 其中 $x_i \in \mathcal{X} \subseteq \mathbb{R}^n$, $y_i \in \mathbb{R}^n$ y = {-1,+1}; 弱学习算法;

输出: 最终分类器 $G(x)$.

(1) 初始化训练数据的权值分布

$$
D_1 = (w_{11}, \dots, w_{1i}, \dots, w_{1N}), \quad w_{1i} = \frac{1}{N}, \quad i = 1, 2, \dots, N
$$

(2) 对 $m = 1, 2, \dots, M$

(a) 使用具有权值分布 D 的训练数据集学习, 得到基本分类器

$$
G_m(x): \mathcal{X} \to \{-1, +1\}
$$

(b) 计算 G_m(x) 在训练数据集上的分类误差率

$$
e_m = P(G_m(x_i) \neq y_i) = \sum_{i=1}^{N} w_{mi} I(G_m(x_i) \neq y_i)
$$
(8.1)

(c) 计算 $G_m(x)$ 的系数

$$
\alpha_m = \frac{1}{2} \log \frac{1 - e_m}{e_m} \tag{8.2}
$$

这里的对数是自然对数.

(d) 更新训练数据集的权值分布

$$
D_{m+1} = (w_{m+1,1}, \cdots, w_{m+1,i}, \cdots, w_{m+1,N})
$$
\n(8.3)

$$
w_{m+1,i} = \frac{w_{mi}}{Z_m} \exp(-\alpha_m y_i G_m(x_i)) \ , \quad i = 1, 2, \cdots, N \tag{8.4}
$$

这里, Z_m是规范化因子

$$
Z_m = \sum_{i=1}^{N} w_{mi} \exp(-\alpha_m y_i G_m(x_i))
$$
\n(8.5)

它使Dm+1成为一个概率分布.

(3) 构建基本分类器的线性组合

$$
f(x) = \sum_{m=1}^{M} \alpha_m G_m(x)
$$
 (8.6)

得到最终分类器

$$
G(x) = sign(f(x)) = sign\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)
$$
\n(8.7)

对 AdaBoost 算法作如下说明:

步骤(1) 假设训练数据集具有均匀的权值分布, 即每个训练样本在基本分类 器的学习中作用相同,这一假设保证第1步能够在原始数据上学习基本分类器G(x).

步骤(2) AdaBoost 反复学习基本分类器, 在每一轮 m = 1,2,…, M 顺次地执 行下列操作:

(a) 使用当前分布 D_ 加权的训练数据集, 学习基本分类器 G_(x).

(b) 计算基本分类器 G"(x) 在加权训练数据集上的分类误差率:

$$
e_m = P(G_m(x_i) \neq y_i) = \sum_{G_m(x_i) \neq y_i} w_{mi}
$$
(8.8)

这里, w_{mi} 表示第m轮中第i个实例的权值, $\sum_{i=1}^{N} w_{mi} = 1$. 这表明, $G_m(x)$ 在加权的 训练数据集上的分类误差率是被 G_m(x) 误分类样本的权值之和, 由此可以看出数 据权值分布 D = 与基本分类器 G = (x) 的分类误差率的关系.

(c) 计算基本分类器 $G_m(x)$ 的系数 α_m . α_m 表示 $G_m(x)$ 在最终分类器中的重要 性. 由式(8.2)可知, 当 $e_m \leq \frac{1}{2}$ 时, $\alpha_m \geq 0$, 并且 α_m 随着 e_m 的减小而增大, 所以 分类误差率越小的基本分类器在最终分类器中的作用越大.

(d) 更新训练数据的权值分布为下一轮作准备. 式 (8.4) 可以写成:

$$
w_{m+1,i} = \begin{cases} \frac{w_{mi}}{Z_m} e^{-\alpha_m}, & G_m(x_i) = y_i \\ \frac{w_{mi}}{Z_m} e^{\alpha_m}, & G_m(x_i) \neq y_i \end{cases}
$$

由此可知, 被基本分类器 G_(x) 误分类样本的权值得以扩大, 而被正确分类样本 的权值却得以缩小. 两相比较, 误分类样本的权值被放大 e^{2a}ⁿ = $\frac{e_m}{1-e_m}$ 倍. 因此,

误分类样本在下一轮学习中起更大的作用. 不改变所给的训练数据, 而不断改变 训练数据权值的分布, 使得训练数据在基本分类器的学习中起不同的作用, 这是 AdaBoost 的一个特点.

步骤(3) 线性组合 f(x)实现 M个基本分类器的加权表决. 系数 α 表示了 基本分类器 $G_m(x)$ 的重要性, 这里, 所有α α= 之和并不为 1. $f(x)$ 的符号决定实例 x 的类, f(x) 的绝对值表示分类的确信度. 利用基本分类器的线性组合构建最终 分类器是 AdaBoost 的另一特点,

Training error goes to zero

Theorem 0.1. Suppose the weak learning assumption holds for all t: each h_t is better than random guessing: for some $\gamma > 0$,

$$
\epsilon_t \leq 1/2 - \gamma
$$

Then the training error

 $\hat{\mathcal{R}}_{01}(\hat{f}) \leq \exp(-2\gamma^2 T)$.

 \Box Linear combination of base learners

$$
H(\bm{x}) = \sum_{t=1}^T \alpha_t h_t(\bm{x})
$$

p AdaBoost can then be viewed as optimizing the **exponential loss**:

$$
\ell_{\exp}(H \mid \mathcal{D}) = \mathbb{E}_{\bm{x} \sim \mathcal{D}}[e^{-f(\bm{x})H(\bm{x})}]
$$

 \Box WHY? Training error of final classifier is bounded by:

$$
\tfrac{1}{m}\textstyle\sum_{i=1}^m\mathbb{I}(\text{sign}(H(x_i))\neq y_i)\leq \tfrac{1}{m}\textstyle\sum_{i=1}^m\text{exp}(-y_iH(x_i))
$$

$$
L_{exp}(\mathbf{x},y) \geq L_{0-1}(\mathbf{x},y)
$$

 $-\ell_{\exp}(H \mid \mathcal{D}) = \mathbb{E}_{\bm{x} \sim \mathcal{D}}[e^{-f(\bm{x})H(\bm{x})}]$

 \Box If $H(x)$ minimizes the exponential loss, then the partial derivative with respect to $H(x)$ is zero:

$$
\frac{\partial \ell_{\exp}(H \mid \mathcal{D})}{\partial H(\bm{x})} = -e^{-H(\bm{x})} P(f(\bm{x}) = 1 \mid \bm{x}) + e^{H(\bm{x})} P(f(\bm{x}) = -1 \mid \bm{x}) = 0
$$

$$
H(\bm{x}) = \frac{1}{2} \ln \frac{P(f(\bm{x}) = 1 \mid \bm{x})}{P(f(\bm{x}) = -1 \mid \bm{x})}
$$

$$
\text{sign}(H(\bm{x})) = \text{sign}\left(\frac{1}{2} \ln \frac{P(f(\bm{x}) = 1 \mid \bm{x})}{P(f(\bm{x}) = -1 \mid \bm{x})}\right)
$$

$$
= \begin{cases} 1, & P(f(\bm{x}) = 1 \mid \bm{x}) > P(f(\bm{x}) = -1 \mid \bm{x}) \\ -1, & P(f(\bm{x}) = 1 \mid \bm{x}) < P(f(\bm{x}) = -1 \mid \bm{x}) \end{cases}
$$

$$
= \arg \max_{y \in \{-1, 1\}} P(f(\bm{x}) = y \mid \bm{x})
$$

 $sign(H(x))$ achieves the Bayes optimal error rate. Hence the exponential loss function is a *consistent* surrogate function of the original 0/1 loss function.

 \Box Adjust the sample distribution based on H_{t-1} such that the base learner h_t in the next round can correct some mistakes made by H_{t-1} .

$$
\ell_{\exp}(H_{t-1} + h_t | \mathcal{D}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[e^{-f(\mathbf{x})(H_{t-1}(\mathbf{x}) + h_t(\mathbf{x}))}]
$$

=
$$
\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})}e^{-f(\mathbf{x})h_t(\mathbf{x})}]
$$

 \Box Use Taylor expansion to approximate:

$$
\ell_{\exp}(H_{t-1} + h_t | \mathcal{D}) \simeq \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x}) h_t(\boldsymbol{x}) + \frac{f^2(\boldsymbol{x}) h_t^2(\boldsymbol{x})}{2} \right) \right]
$$

=
$$
\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x}) h_t(\boldsymbol{x}) + \frac{1}{2} \right) \right]
$$

 \Box Hence, the ideal classifier is

$$
h_t(\boldsymbol{x}) = \argmin_h \ell_{\exp}(H_{t-1} + h \mid \mathcal{D})
$$

\n
$$
= \argmin_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x})h(\boldsymbol{x}) + \frac{1}{2} \right) \right]
$$

\n
$$
= \argmax_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} f(\boldsymbol{x})h(\boldsymbol{x}) \right]
$$

\n
$$
= \argmax_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[\frac{e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} [e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}]} f(\boldsymbol{x})h(\boldsymbol{x}) \right],
$$

 \mathbf{D} where $\mathbb{E}_{\bm{x} \sim \mathcal{D}}[e^{-f(\bm{x})H_{t-1}(\bm{x})}]$ is a constant. Let D_t denote a distribution

 \Box According to the definition of mathematical expectation, the ideal classifier is equivalent to

$$
h_t({\boldsymbol x}) = \argmax_h \mathbb{E}_{{\boldsymbol x}\sim\mathcal{D}}\left[\frac{e^{-f({\boldsymbol x})H_{t-1}({\boldsymbol x})}}{\mathbb{E}_{{\boldsymbol x}\sim\mathcal{D}}[e^{-f({\boldsymbol x})H_{t-1}({\boldsymbol x})]}} f({\boldsymbol x})h({\boldsymbol x})\right] \\ = \argmax_h \mathbb{E}_{{\boldsymbol x}\sim\mathcal{D}_t}\left[f({\boldsymbol x})h({\boldsymbol x})\right] \; .
$$

□ Since $f(x)$, $h(x) \in \{-1, +1\}$, we have

$$
f(\boldsymbol{x})h(\boldsymbol{x}) = 1 - 2\, \mathbb{I}\big(f(\boldsymbol{x}) \neq h(\boldsymbol{x})\big)
$$

 \Box The ideal classifier is

$$
h_t({\boldsymbol x}) = \argmin_h \mathbb{E}_{{\boldsymbol x} \sim \mathcal{D}_t} \left[\mathbb{I}\big(f({\boldsymbol x}) \neq h({\boldsymbol x})\big)\right]
$$

 \Box The update rule of the sample distribution is

$$
\mathcal{D}_{t+1}(\boldsymbol{x}) = \frac{\mathcal{D}(\boldsymbol{x}) e^{-f(\boldsymbol{x})H_t(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}e^{-f(\boldsymbol{x})\alpha_t h_t(\boldsymbol{x})}\right]}
$$
\n
$$
= \frac{\mathcal{D}(\boldsymbol{x}) e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}e^{-f(\boldsymbol{x})\alpha_t h_t(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}\right]}
$$
\n
$$
= \mathcal{D}_t(\boldsymbol{x}) \cdot e^{-f(\boldsymbol{x})\alpha_t h_t(\boldsymbol{x})} \frac{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}\right]}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[e^{-f(\boldsymbol{x})H_t(\boldsymbol{x})}\right]}
$$

Boosting - Notice

 \Box In each round, check whether the current base learner is better than random guessing.

 \Box To learn from specified sample distributions

- \bullet re-weighting
- \bullet re-sampling

 \Box The base classifier h_t is generated from the distribution D_t . Its weight α_t is estimated by letting $\alpha_t h_t$ minimize the exponential loss function:

$$
\ell_{\exp}(\alpha_t h_t | \mathcal{D}_t) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_t} \left[e^{-f(\mathbf{x})\alpha_t h_t(\mathbf{x})} \right]
$$

\n
$$
= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_t} \left[e^{-\alpha_t} \mathbb{I} \left(f(\mathbf{x}) = h_t(\mathbf{x}) \right) + e^{\alpha_t} \mathbb{I} \left(f(\mathbf{x}) \neq h_t(\mathbf{x}) \right) \right]
$$

\n
$$
= e^{-\alpha_t} P_{\mathbf{x} \sim \mathcal{D}_t} \left(f(\mathbf{x}) = h_t(\mathbf{x}) \right) + e^{\alpha_t} P_{\mathbf{x} \sim \mathcal{D}_t} \left(f(\mathbf{x}) \neq h_t(\mathbf{x}) \right)
$$

\n
$$
= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t
$$

\nwhere $\epsilon_t = P_{\mathbf{x} \sim \mathcal{D}_t} \left(h_t(\mathbf{x}) \neq f(\mathbf{x}) \right)$

 \Box Set the derivative of the exponential loss function to 0

$$
\begin{aligned} \frac{\partial \ell_{\mathrm{exp}} (\alpha_t h_t \mid \mathcal{D}_t)}{\partial \alpha_t} &= -e^{-\alpha_t} (1-\epsilon_t) + e^{\alpha_t} \epsilon_t = 0 \\ \alpha_t &= \frac{1}{2} \mathrm{ln} \! \left(\frac{1-\epsilon_t}{\epsilon_t} \right) \end{aligned}
$$

weak classifiers are decision stumps

(decision tree with a single split)

The first round:

The second round:

The third round:

The final round:

Logistic regression and Boosting

 \square Logistic regression equivalent to minimizing log loss

$$
\frac{1}{m}\sum_{i=1}^{m}\ln(1+\exp(-y_i f(x_i)))
$$

p Boosting minimizes similar loss function!!

$$
\ell_{\exp}(H \mid \mathcal{D}) = \mathbb{E}_{\bm{x} \sim \mathcal{D}}[e^{-f(\bm{x})H(\bm{x})}]
$$

Both smooth approximations of 0/1 loss!

What you need to know about Boosting

- \Box Combine weak classifiers to obtain very strong classifier
	- Weak classifier slightly better than random on training data
	- Resulting very strong classifier can eventually provide zero training error
- \Box AdaBoost algorithm
- \Box Boosting v. Logistic Regression
	- Similar loss functions
	- Single optimization (LR) v. Incrementally improving classification (B)
- \Box Most popular application of Boosting:
	- Boosted decision stumps!
	- Very simple to implement, very effective classifier

Ensemble Learning

- **D** Individual and Ensemble
- **□** Bagging and Random Forest
- \blacksquare Boosting
	- **Adaboost**
- \Box Combination Strategies
	- **•** Averaging
	- Voting
	- Combining by Learning
- **D** Diversity
	- **Error-Ambiguity Decomposition**
	- **Diversity Measures**
	- **Diversity Generation**

Averaging

Numerical output

p *Simple averaging*

$$
H(\boldsymbol{x}) = \frac{1}{T} \sum_{i=1}^T h_i(\boldsymbol{x}).
$$

p *Weighted averaging*

$$
H(\boldsymbol{x}) = \sum_{i=1}^{T} w_i h_i(\boldsymbol{x}), \quad w_i \ge 0 \text{ and } \sum_{i=1}^{T} w_i = 1.
$$

Averaging

 \Box Simple averaging is a special case of weighted averaging.

 \Box Weighted averaging has been widely used since the 1950s.

 \Box Other combination methods can all be viewed as its special cases or variants of weighted averaging.

 \Box Weighted averaging can be regarded as a fundamental motivation of ensemble learning studies.

 \Box Weighted averaging is not necessarily better than simple averaging

Voting

For classification

\square Majority voting

$$
H(\boldsymbol{x}) = \begin{cases} c_j, & \text{if } \sum_{i=1}^T h_i^j(\boldsymbol{x}) > 0.5 \sum_{k=1}^N \sum_{i=1}^T h_i^k(\boldsymbol{x});\\ \text{reject}, & \text{otherwise.} \end{cases}
$$

\square Plurality voting

$$
H(\bm{x}) = c^{\,}_{\argmax} \mathop{\textstyle \sum}_{i=1}^{T} h_i^j(\bm{x})
$$

 \square Weighted voting

$$
H(\boldsymbol{x}) = c^{\,}_{\argmax} \sum_{i=1}^{T} w_i h_i^j(\boldsymbol{x})
$$

Voting

- \Box Two common value types for the output of h_i
- \Box 1) Class label $h_i^{\jmath}(\boldsymbol{x}) \in \{0,1\}$ hard voting
- \Box 2) Class probability $h_i^{\jmath}(\bm{x}) \in [0,1]$ soft voting

calibration

 \Box Confidence values \longrightarrow probabilities

 \Box If different types of base learners are used, the class probabilities can be converted into class labels before voting.

Stacking

Zhi-Hua Zhou. Deep Forest: Towards an Alternative to Deep Neural Networks. IJCAI'17

Ensemble Learning

- **D** Individual and Ensemble
- **□** Bagging and Random Forest
- \blacksquare Boosting
	- **Adaboost**
- **D** Combination Strategies
	- **•** Averaging
	- **•** Voting
	- **Combining by Learning**
- \square Diversity
	- **Error-Ambiguity Decomposition**
	- **Diversity Measures**
	- **Diversity Generation**

 \Box The *ambiguity* of the learner h_i is defined as

$$
A(h_i\mid \boldsymbol{x})=\big(h_i(\boldsymbol{x})-H(\boldsymbol{x})\big)^2
$$

□ The *ambiguity* of the ensemble is defined as

$$
\overline{A}(h\mid \bm{x})=\sum\nolimits_{i=1}^{T}w_{i}A(h_{i}\mid \bm{x})\\=\sum\nolimits_{i=1}^{T}w_{i}\big(h_{i}\left(\bm{x}\right)-H\left(\bm{x}\right)\big)^{2}
$$

- \Box The ambiguity term represents the degree of disagreement among individual learners on the sample x_i , which reflects the level of diversity in some sense.
- \Box The squared errors of the individual learner h_i and the ensemble H are, respectively,

$$
E(h_i \mid \bm{x}) = \big(f(\bm{x}) - h_i(\bm{x})\big)^2
$$

$$
E(H \mid \bm{x}) = \big(f(\bm{x}) - H(\bm{x})\big)^2
$$

 $\mathbf{\Sigma}$ Let $\overline{E}(h \mid \boldsymbol{x}) = \sum_{i=1}^{T} w_i \cdot E(h_i \mid \boldsymbol{x})$ denote the weighted average error of individual learners, then, we have

$$
\overline{A}(h \mid \boldsymbol{x}) = \sum_{i=1}^T w_i E(h_i \mid \boldsymbol{x}) - E(H \mid \boldsymbol{x}) \\ = \overline{E}(h \mid \boldsymbol{x}) - E(H \mid \boldsymbol{x}) \ .
$$

 \Box Let $p(x)$ denote the probability density of the sample x, for all samples we have

$$
\sum_{i=1}^T w_i \int \! A(h_i \mid \bm{x}) p(\bm{x}) d\bm{x} = \sum_{i=1}^T w_i \! \int \! E(h_i \mid \bm{x}) p(\bm{x}) d\bm{x} - \int \! E(H \mid \bm{x}) p(\bm{x}) d\bm{x}
$$

 \Box The generalization error and the ambiguity term of the learner h_i on all samples are, respectively,

$$
E_i = \int E(h_i \mid \bm{x}) p(\bm{x}) d\bm{x}
$$

$$
A_i = \int A(h_i \mid \bm{x}) p(\bm{x}) d\bm{x}
$$

 \Box The generalization error of the ensemble is

$$
E = \int E(H \mid \bm{x}) p(\bm{x}) d\bm{x}
$$

 \Box Let $\overline{E} = \sum_{i=1}^{T} w_i E_i$ denote the weighted average error of individual learners, and $\overline{A} = \sum_{i=1}^{T} w_i A_i$ denote the weighted average ambiguity of individual learners. Then

$$
E=\overline{E}-\overline{A}
$$

 \Box This elegant equation clearly shows that the generalization ability of an ensemble depends on the accuracy and diversity of individual learners. The above analysis is known as the *error-ambiguity decomposition.*

- \Box Why can't we optimize $\overline{E} \overline{A}$ directly?
	- \triangleright Direct optimization of $\overline{E} \overline{A}$ is hard in practice:
		- **Both terms are defined in the entire sample space;**
		- \overline{A} is not a diversity measure that is directly operable;
		- The above derivation process is only applicable to regression and is difficult to extend to classification.

 \Box Diversity measures are for measuring the diversity of individual learners in an ensemble.

 \Box The *contingency table* of the classifiers h_i and h_j for binary classification is

$$
\begin{array}{|c|cc|} \hline & h_i = +1 & h_i = -1 \\ \hline h_j = +1 & a & c \\ h_j = -1 & b & d \\ \hline \end{array}
$$

 $a + b + c + d = m$

□ Some representative diversity measures:

• Disagreement Measure

$$
dis_{ij}=\frac{b+c}{m}
$$

• Correlation Coefficient

$$
\rho_{ij}=\frac{ad-bc}{\sqrt{(a+b)(a+c)(c+d)(b+d)}}
$$

□ Some representative diversity measures:

• Q-Statistic

$$
Q_{ij} = \frac{ad - bc}{ad + bc} \qquad \qquad |Q_{ij}| \geq |\rho_{ij}|
$$

 \bullet κ -Statistic

$$
\kappa = \frac{p_1 - p_2}{1 - p_2} \qquad p_1 = \frac{a + d}{m},
$$

$$
p_2 = \frac{(a + b)(a + c) + (c + d)(b + d)}{m^2}
$$

\Box K-error diagrams

Diversity Generation

 \Box How can we enhance diversity?

- Data sample manipulation
- l Input feature manipulation
- Output representation manipulation
- l Algorithm Parameter Manipulation
- Different diversity generation mechanisms can be used together

Data sample manipulation

- Data sample manipulation is often based on sampling methods
	- **Bootstrap sampling used by Bagging**
	- **Sequential sampling used by AdaBoost**
- \Box Base learners that are are sensitive to data sample manipulation (*unstable base learners*)
	- \bullet Such as decision trees and neural networks

Data sampling manipulation is particularly effective for unstable base learners

- \Box Base learners that are are insensitive to data sample manipulation (*stable base learners*)
	- \bullet Such as linear learners, SVM, naïve Bayes, and k -nearest neighbors

Input feature manipulation

\Box Random subspace

Algorithm 8.4 Random Subspace.

Input: Training set $D = \{ (x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m) \};$ Base learning algorithm \mathfrak{L} ; Number of base learners T ; Number of features in subspace d' .

Process:

\n- 1: **for**
$$
t = 1, 2, \ldots, T
$$
 do
\n- 2: $\mathcal{F}_t = \text{RS}(D, d')$; d' randomly selected features
\n- 3: $D_t = \text{Map}_{\mathcal{F}_t}(D)$; d' keeps only the selected features
\n- 4: $h_t = \mathfrak{L}(D_t)$.
\n- 5: **end for**
\n- **Output:** $H(x) = \text{area max} \quad \sum T \quad \mathbb{I}(h_t(\text{Man}_t(x)) = u)$
\n

Output: $H(x) = \arg \max_{y \in \mathcal{Y}} \sum_{t=1}^{T} \mathbb{I} \left(h_t \left(\text{Map}_{\mathcal{F}_t}(x) \right) = y \right).$