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复习课
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关于考试
n 总成绩

q 平时成绩 40%+考试 60%
n 考试题型

q 简答题
q 演算题
q 推导题
q 证明题
q 推导题、证明题：一定灵活性或综合性

n 考试要求
q 时间：120分钟，6月18日下午
q 闭卷考试：不能携带任何资料

q 英文作答（实在忘记的单词：…）
q 不带计算器：
计算不复杂，根据题目需要给出分数形式结果即可
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Lecture 1

Introduction
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Example: “Sheep” vs. “Goat” (Cont.)
Generalization

[泛化能力/推广能力] The	ultimate	goal!

The	central	aim	of	designing	a	classifier	is	to	make	correct	
decisions	when	presented	with	novel (unseen/test)	patterns,	
not	on	training	patterns	whose	labels	are	already	known

Tradeoff

Performance on 
the training set

Simplicity of 
the classifier
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Generalization Error
Definitions of the	generalization	error	and	empirical	error	from	
“Foundations	of	Machine	Learning”

The	generalization	error	of	a	hypothesis	is	not	directly	accessible
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Lecture 2

Linear Regression
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n Minimize	mean-squared	error	(MSE):	
Loss	function:	How	much	 !𝑦 differs	from	the	true	𝑦

n Calculate	the	derivatives	of										with	respect	to				
and			:

Linear Regression – loss function
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n We	have	the	closed-form	solutions

where

Linear Regression - Least Square Method 
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Multivariate Linear Regression

n Rewrite and			as																, the	data	set	is	
represented	as
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Let                                             and find the derivative with respect to    

The closed-form solution of      can be obtained by making the equation 
equal to 0.

Multivariate Linear Regression - Least 
Square Method 
p Least square method
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p If is a full-rank matrix or a positive definite 
matrix, then

where is the inverse of , the learned multivariate
linear regression model is

p is often not full-rank
l gradient descent (which is more broadly applicable)
l pseudo-inverse

Multivariate Linear Regression - Least 
Square Method 
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Lecture 3

Logistic Regression
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Binary Classification
n The	predictions	and	the	output	labels

n The	real-valued	predictions	of	the	linear	regression	model	need	
to	be	converted	into	0/1.

n Ideally,	the	unit-step	function	is	desired

q which	predicts	positive	for				greater	than	0,	negative	for				smaller	
than	0,	and	an	arbitrary	output	when				equals	to	0.
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n Disadvantages	of	unit-step	function
q not	continuous

n Logistic	(sigmoid)	function:	a	surrogate	function	
to	approximate	the	unit-step	function
q monotonic	differentiable

Comparison between unit-step 
function and logistic function

Binary Classification
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Logistic Regression 
Data:	Inputs	are	continuous	vectors	of	length	𝑑.	Outputs	are	
discrete	labels.	

Model:	Logistic	function	applied	to	dot	product	of	
parameters	with	input	vector.

Learning:	finds	the	parameters	that	minimize	some	objective	
function.

Prediction:	Output	is	the	most	probable	class.
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Log odds
n Apply	logistic	function

n Log	odds
q the	logarithm	of	the	relative	likelihood	of	a	sample	being	

a	positive	sample
ln

𝑦
1 − 𝑦

= 𝒘!𝒙 + b

n Logistic	regression	has	several	nice	properties
l without	requiring	any	prior	assumptions	on	the	data	

distribution
l it	predicts	labels	together	with	associated	probabilities
l it	is	solvable	with	numerical	optimization	methods.

transform into



Machine Learning Spring	Semester 17

n Maximum	likelihood
q Given	the	training	dataset
q Maximizing	the	probability	of	each	sample	being	

predicted	as	the	ground-truth	label
n the	log-likelihood	to	be	maximized	is:

n assumption	that	the	training	examples	are	independent:

Logistic regression - maximum likelihood



Machine Learning Spring	Semester 18

n Log	odds	can	be	rewritten	as	

and	consequently,

Logistic regression - maximum likelihood
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n Transform	into	minimize	negative	log-likelihood
q Let	 ， ， can	be	rewritten	

as	
q Let

the	likelihood	term	in	can	be	rewritten	as

q maximizing	log-likelihood	is	equivalent	to	minimizing

Logistic regression - maximum likelihood
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n Transform	into	minimize	negative	log-likelihood
q Let	 ， ， can	be	rewritten	

as	
q Let

the	likelihood	term	in	can	be	rewritten	as

q maximizing	log-likelihood	is	equivalent	to	minimizing

Logistic regression - maximum likelihood

The	Cross-Entropy	loss!
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Gradient Descent

− 𝛼
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Gradient for Logistic Regression
• The	cross-entropy	loss	function

• The	gradient

• Instead	of	using	the	sum	notation,	we	can	more	efficiently	
compute	the	gradient in	its	matrix	form
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Lecture 4

Model Selection and 

Evaluation
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Performance Measure
Error	rate	and	accuracy are	the	most	commonly	used	
performance	measures	in	classification	problems：

l Error	rate	is	the	proportion	of	misclassified	samples	to	
all	samples

l Accuracy	is	the	proportion	of	correctly	classified	samples	
instead

Error	rate Accuracy
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Performance Measure
n We	often	want	to	know	“What	percentage	of	the	retrieved	information	is	

of	interest	to	users?”	and	“How	much	of	the	information	the	user	
interested	in	is	retrieved?”	in	applications	like	information	retrieval	and	
web	search. For	such	questions,	precision and	recall are	better	choices.

n In	binary	classification,	there	are	four	combinations	of	the	ground-
truth	class	and	the	predicted	class,	namely	true	positive,	false	positive,	
true	negative,	and	false	negative.	The	four	combinations	can	be	
displayed	in	a	confusion	matrix.

Precision

Recall

The	confusion	matrix	of	binary	classification
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Lecture 6

Support Vector

Machines
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The Lagrange Method

Consider	a	general	optimization	problem	(called	as	primal	problem)

We	define	its	Lagrangian as

Lagrangian	multipliers	𝜆 ∈ ℝ", 𝑢 ∈ ℝ#.
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The Dual Problem
A	re-written	Primal	Problem	:	

min
$
max
%&',)

𝐿(𝑥, 𝜆, 𝑢)

The	Dual	Problem:	

max
%&',)

min
$
𝐿(𝑥, 𝜆, 𝑢)

Theorem	(weak duality):

𝑑∗ = max
%&',)

min
$
𝐿(𝑥, 𝜆, 𝑢) ≤ min

$
max
%&',)

𝐿(𝑥, 𝜆, 𝑢) = 𝑝∗

Theorem	(strong duality,	e.g.,	Slater’s	condition):
If	the	primal	is	a	convex	problem,	and	there	exists at least	one	strictly	
feasible	 4𝑥,meaning	that		∃"𝑥, 𝑔! "𝑥 > 0, 𝑖 = 1, … , 𝑘, ℎ" "𝑥 = 0, 𝑗 = 1, … ,𝑚.

𝑑∗ = 𝑝∗

Although	the	primal	
problem	is	not	required	to	
be	convex,	the	dual	
problem	is	always	convex.
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Karush–Kuhn–Tucker (KKT) conditions
Necessary	conditions
If	𝑥∗ and	𝜆∗, 𝑢∗ are	the	primal	and	dual	solutions	respectively	with	zero	
duality	gap,	we	will	show	that	𝑥∗, 𝜆∗, 𝑢∗ satisfy	the	KKT	conditions.	

equality: 𝑥∗ minimizes	L(𝑥, 𝜆∗, 𝑢∗)	

equality: 𝜆!∗ 𝑔! 𝑥∗ = 0

complementary	slackness

stationarity

For	convex	problems	with	strong	duality	(e.g.,	when	Slater's	condition	is	satisfied),	
the	KKT	conditions	are	necessary	and	sufficient	optimality	conditions,	i.e.,	𝑥∗
and	(𝜆∗, 𝑢∗)	are	primal	and	dual	optimal	if	and	only	if	the	KKT	conditions	hold.
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The Primal Form of SVM
Maximum	margin:	finding	the	parameters					and				that	
maximize

This	is	an	optimization	problem	with	linear,	inequality	constraints.
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Dual problem
n Lagrange	multipliers

q Step-1：introducing	a	Lagrange	multiplier														,	gives	the	
Lagrange	function

q Step-2：Setting	the	partial	derivatives	of with	respect	
to and to	0 gives

q Step-3：Substituting	back
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Sparsity of the solution

n desired	model：

n KKT conditions：

Sparsity of	the	solution	of	SVM:	once	the	training	
completed,	most	training	samples	are	no	longer	needed	
since	the	final	model	only	depends	on	the	support	vectors.

primal	constraints

dual	constraints

complementary	slackness

stationarity
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Key idea #2: the slack variables
-Q:	It	is	often	difficult	to	find	an	appropriate	kernel	function	
to	make	the	training	samples	linearly	separable	in	the	
feature	space.	Even	if	we	do	find	such	a	kernel	function,	it	is	
hard	to	tell	if	it	is	a	result	of	overfitting.
-A:		Allow	a	support	vector	machine	to	make	mistakes	on	a	
few	samples:	soft	margin.

0

Instances	violating	the	
constraint
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ℓ! relaxation of the penalty term
The	discrete	nature	of	the	penalty	term	on	previous	slide,	∑+ 1,!-' =

||𝜉||',	makes	the	problem	intractable.	

A	common	strategy	is	to	replace	the	ℓ' penalty	with	a	ℓ. penalty:	
∑+ 𝜉+ = ||𝜉||.,	resulting	in	the	following	full	problem

Remarks:	
(1)	Also	a	quadratic	program	with	linear	ineq.	constraints	(just	more	
variables):	𝑦+(𝒘 · 𝒙+ + 𝑏) + 𝜉+ ≥ 1.
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The Lagrange dual problem

The	associated	Lagrange	function	is

(stationary	point)	To	find	the	dual	problem	we	need	to	fix	𝜆,	
�⃗� and	maximize	over	𝒘, 𝑏, 𝜉:
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The Lagrange dual problem
This	yields	the	Lagrange	dual	function

The	dual	problem	would	be	to	maximize	𝐿∗ over	𝜆, �⃗� subject	to	the	
constraints.	
Since	𝐿∗ is	constant	with	respect	to	the	𝜇+,	we	can	eliminate	them	to	
obtain	a	reduced	dual	problem:

What 
changed? 
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What about the KKT conditions?

The	KKT	conditions	are	the	following

We	see	that	
•	The	optimal	w has	the	same	formula:	𝒘 = ∑𝜆<𝑦<𝒙<.	
•	Any	point	with	𝜆< > 0 and	correspondingly	𝑦<(𝒘 · 𝒙 +
𝑏) = 1 − 𝜉< is	a	support	vector	(not	just	those	on	the	margin	
boundary	𝒘 · 𝒙 + 𝑏 = ±1).
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What if the data is not linearly
separable?

Use	features	of	features
of	features	of	features….
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Kernel SVM
Let										denote	the	mapped	feature	vector	of						,	the	separating																																																							
hyperplane																																			can	be	expressed	as

Primal	
Problem

Dual	
Problem

Prediction
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What are good kernel functions?

n Linear	kernel
q 𝐾 𝒙C , 𝒙D = 𝜙 𝒙C 𝜙 𝒙D = 𝒙C ⋅ 𝒙D

n Polynomial
q 𝐾 𝒙C , 𝒙D = 𝒙C ⋅ 𝒙D + 1

E

n Gaussian	(also	called	Radial	Basis	Function,	or	RBF)

q 𝐾 𝒙C , 𝒙D = 𝑒
𝒙"#𝒙$

%

%&%

n …	
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Quadratic kernel

Feature	mapping	given	by:
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Representer theorem

Conclusion:	The	learned	models	of	SVM	and	SVR	can	be	
expressed	as	a	linear	combination	of	the	kernel	functions.
A	more	generalized	conclusion(representer	theorem):	for	
any	increasing function and any	non-negative	loss	
function			,	the	optimization	problem

Solution	can	be	written	in	the	form	of

SVM

SVR
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Lecture 8

Backpropagation
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1. Forward pass: for each training example, 
compute the outputs for all layers:

2. Backwards pass: compute loss derivatives 
iteratively from top to bottom:

3. Parameter update: Compute gradients w.r.t.
weights, and update weights: 

Backpropagation Summary

…
…

(output)

(input)

…

…
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Linear layer

• Forward propagation: 

• Backprop to input: 

If we look at the i component of output xout, with respect to the j component of the input, xin:

Therefore:

With W being a 
matrix of size 
|xout|×|xin|
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• Backprop to input: 

Now let’s see how we use the set of outputs to compute the
weights update equation (backprop to the weights).

• Forward propagation: 

Linear layer
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• Backprop to weights: 

If we look at how the parameter Wij changes the cost, only the i component 
of the output will change, therefore:

• Forward propagation: 

And now we can update the weights:

Linear layer
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Weight updates:

Linear layer
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Lecture 9

Convolution Neural 

Network
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Simplification 2

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

…
...

…

3	x	3	x	3	
weights

1

bias

…
...

…
3	x	3	x	3	weights

1

bias

parameter	sharing
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Pooling – Max Pooling 

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter	2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -
4 3

1 -1 -1
-1 1 -1
-1 -1 1

Filter	1

No	learnable
parameters!
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Chapter 11

Decision Tree
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Basic Process 
(1)	All	samples	in	the	
current	node	belong	to	
the	same	class.	

(2)	The	current	feature	
set	is	empty,	or	all	
samples	have	the	same	
feature	values.	

(3)	There	is	no sample	in	
the	current	node.	
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n Suppose	that	the	discrete	feature has				possible	values .	
Then,	splitting	the	data	set by	feature			 produces			 child	nodes,	where	
the	 th	child	node					 includes	all	samples	in				 taking	the	value					 for	
feature .	Then,	the	information	gain of	splitting	the	data	set			 with	
feature		 is	calculated	as	

n In	general,	the	higher	the	information	gain,	the	more	purity	
improvement we	can	expect	by	splitting			 with	feature		 .	

n The	decision	tree	algorithm	ID3	[Quinlan,	1986]	takes	information	gain	
as	the	guideline	for	selecting	the	splitting	features.	

is the importance of each node. The greater the number 
of samples, the greater the impact of the branch node. 

Split Selection: Information Gain 
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Pruning 
n Why	pruning?	

q Pruning is	the	primary	strategy	of	decision	tree	learning	
algorithms	to	deal	with	overfitting.	

q If	there	are	too	many	branches,	then	the	learner	may	be	
misled	by	the	peculiarities	of	the	training	samples	and	
incorrectly	consider	them	as	the	underlying	truth.	

n General	Pruning	Strategies	
q pre-pruning	
q post-pruning	

n How	to	evaluate	generalization	ability	after	pruning?	
q We	can	use	the	hold-out	method to	reserve	part	of	the	data	

as	a	validation	set	for	performance	evaluation.
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Pruning: Pre-pruning 

n Pre-pruning	decides	by	comparing	the	
generalization	abilities	before	and	after	splitting.	
q If	the	validation	accuracy	decreases	after	pruning,	the	

splitting	is	accepted.	
q Otherwise,	the	splitting	is	rejected.	

n When	no	splitting	is	performed,	this	node	is	
marked	as	a	leaf	node	and	its	label	is	set	to	the	
majority	class.	
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Pruning: Post-pruning 

The	validation	
accuracy	of	this	
decision	tree	is

p Post-pruning	allows	a	decision	tree	to	grow	into	a	complete	tree.	
Then	it	takes	a	bottom-up	strategy	to	examine	every	non-leaf	node	
in	the	completely	grown	decision	tree.	
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Chapter 12

Bayesian Classifier



p Bayesian decision theory is a fundamental decision-making 
approach under the probability framework.
l When all relevant probabilities were known, Bayesian decision 

theory makes optimal classification decisions based on the 
probabilities and costs of misclassifications.

p Let us assume that there are    distinct class labels, that 
is,                        . Let     denote the cost of misclassifying 
a sample of class    as class    . Then, with the posterior 
probability            we can calculate the expected loss of 
classifying a sample    as class   , that is, the conditional 
risk of the sample   :

pOur task is to find a decision rule                that minimizes 
the overall risk:

Bayes Decision Theory



Bayes Decision Theory
p The overall risk        is minimized when the conditional risk                          

of each sample    is minimized.

p This leads to the Bayes decision rule: to minimize the 
overall risk, classify each sample as the class that minimizes 
the conditional risk

l where    is called the Bayes optimal classifier, and its 
associated overall risk        is called the Bayes risk.

l is the best performance that can be achieved by any 
classifiers, that is, the theoretically achievable upper bound of 
accuracy for any machine learning models.



Bayes Decision Theory
p For generative models, we must evaluate:

p According to Bayes’ theorem,
can be written as:

the prior probability 
represents the proportion 

of each class in the sample, 
which can be estimated by 
the frequency of each class 

in the training set

the evidence factor, 
which is independent of 
the class

the class-conditional 
probability, also known as 
the likelihood, of the 
sample    with respect to 
class 



Naïve Bayes Classifier

Since        is the same for all classes, from the Bayes 
decision rule, we have

which is the formulation of the Naïve Bayes classifier.



Naïve Bayes Classifier
p To train a Naïve Bayes classifier, we compute the prior 

probability from the training set    and then compute 
the conditional probability          for each attribute.
l Let      denote a subset of    containing all samples of class  . 

Then, The prior probability can be estimated by

l For discrete attributes, let        denote a subset of     
containing all samples taking the value    on the   -th
attribute. Then, the conditional probability            can be 
estimated by

l For continuous features, suppose                           , where     
and     are, respectively, the mean and variance of the  -th
feature of class   . Then, we have



Laplace (add-1) Smoothing

p To	avoid	“removing”	the	information	carried	by	other	features,	a	
common	choice	is	the	Laplace	smoothing.
l Let					denote	the	number	of	distinct	classes	in	the	training	

set					, denote	the	number	of	distinct	values	the		i-th
feature	can	take.	Then,	we	write	smoothed	version	of	prior	
probability	and	conditional	probability	as:

Why?



Text Classification

The	Bag	of	Words	Representation



Multinomial Distribution

for	non-negative	integers	𝑥., … , 𝑥".

Suppose	one	does	an	experiment	of	extracting 𝑛 balls	of	𝑘 different	colors	
from	a	bag,	replacing	the	extracted	balls	after	each	draw.	Balls	of	the	same	
color	are	equivalent.	Denote	the	variable	which	is	the	number	of	extracted	
balls	of	color	𝑖 (𝑖 = 1,… , 𝑘) as	𝑋+,	and	denote	as	𝑝_𝑖 the	probability	that	a	
given	extraction	will	be	in	color	𝑖.	

The	probability	mass	function	of	this	multinomial	distribution	is:



Generative Model for Naive Bayes

𝑃 𝑥< 𝑐)



Text Classification

Consider	a	naive	Bayes	model	with	the	classes	positive	(+)	and	negative	(-)
and	the	following	model	parameters:

Note	that	this	is	just	the	likelihood	part	of	the	naive	Bayes	model.	



Text Classification

To apply the naive Bayes classifier to text, we need to consider 
word positions, by simply walking an index through every word 
position in the document:

Naive Bayes is a linear classifiers.

Naive Bayes calculations are done in log space, to avoid 
underflow and increase speed



Training the Naive Bayes Classifier

Let𝑁/ be the number of documents in our training data with class 𝑐
and 𝑁01/ be the total number of documents. Then:



Text Classification

Priors:
𝑃 𝑐 =?
𝑃 𝑗 =?

Conditional Probabilities: 
𝑃(𝐶ℎ𝑖𝑛𝑒𝑠𝑒|𝑐) =?
𝑃(𝑇𝑜𝑘𝑦𝑜|𝑐) =?
𝑃(𝐽𝑎𝑝𝑎𝑛|𝑐) =?
𝑃(𝐶ℎ𝑖𝑛𝑒𝑠𝑒|𝑗) =?
𝑃(𝑇𝑜𝑘𝑦𝑜|𝑗) =?
𝑃(𝐽𝑎𝑝𝑎𝑛|𝑗) =?

Choosing a class: 

𝑃 𝑐 𝑑5 =?
𝑃 𝑗 𝑑5 =?



Text Classification

Priors:

𝑃 𝑐 =
3 + 1
4 + 2

=
2
3

𝑃 𝑗 =
1 + 1
4 + 2

=
1
3



Text Classification



Text Classification

Choosing a class: 

𝑃 𝑐 𝑑5 ∝
2
3
∗

3
7

=
∗
1
14

∗
1
14

≈ 0.00027

𝑃 𝑗 𝑑5 ∝
1
3
∗

2
9

=
∗
2
9
∗
2
9
≈ 0.00018



Chapter 13

Ensemble Learning



Bagging
p Bagging = Bootstrap AGGregatING

The bootstrap is one of the most important ideas in all of statistics!



Random Forests

p Random Forests = bagged decision trees, with one 
extra trick to decorrelate the predictions
Ø When choosing each node of the decision tree, 

choose a random set of input features, and only 
consider splits on those features

p Random forests are probably the best black-box 
machine learning algorithm — they often work well 
with no tuning whatsoever.
Ø one of the most widely used algorithms in Kaggle 

competitions



Chapter 14

Clustering



k-means Convergence



Hierarchical Clustering

p Hierarchical Clustering aims to create a tree-like 
clustering structure by dividing a data set at different 
layers. The hierarchy of clusters can be formed by taking 
either a bottom-up strategy (Agglomerative，聚集) or a 
top-down strategy (Divisive，分裂).

p AGNES algorithm (bottom-up Hierarchical Clustering)
starts by considering each sample in the data set as an 

initial cluster. Then, in each round, two nearest clusters are 
merged as a new cluster, and this process repeats until the 
number of clusters meets the pre-specified value.

We define the distances of given clusters    and    in 
different forms.



Hierarchical Clustering

Minimum distance（single-linkage，“单链接”):

Maximum distance（complete-linkage，“全链接”) :

Average distance（average-linkage，“均链接“）：



Hierarchical Clustering – dendrogram

p The dendrogram（树状图）of AGNES：



Updating Distance Matrix

Let us assume that we have five samples (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) and the following 
matrix of pairwise distances between them:

In this example, 𝐷$(𝑎, 𝑏) = 17 is the lowest value of 𝐷$ so we cluster 
samples a and b.



Updating Distance Matrix

We then proceed to update the initial distance matrix 𝐷$ into a new 
matrix 𝐷%, reduced in size by one row and one column. Let's consider 
the single-linkage clustering:

What if we adopt the complete-linkage clustering?


