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Lecture 2

Linear Regression
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Outline
n Linear	Regression

q Simple	Example
q Model

n Learning
q Gradient	Descent	
q SGD
q Closed	Form	

n Advanced	Topics	
q Probabilistic	Interpretation	of	LMS
q L2	Regularization
q L1 Regularization
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Linear Regression
n Given	a	data	set

where	

n The	aim	of	linear	regression	
q Learn	a	linear	model	that	can	accurately	predict	the	real-

valued	output	labels

n For	discrete	variables
q An	ordinal	relationship	exists	between	values

n Convert	the	variables	into	real-valued	variables
q No	ordinal	relationship	exists

n Convert	the	discrete	variable	with	k possible	values	into	a	k-
dimensional	vector
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Linear Regression
n Linear	regression	aims	to	learn	the	function:

n True	regression	functions	are	never	linear!

where 𝜖 is	an	error	term	of	measurement	error	or	other	noise
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Linear Regression example

• Generated: w=2
• Recovered: w=2.03
• Noise: std=1

Slide courtesy of William Cohen 
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Linear Regression example

• Generated: w=2
• Recovered: w=2.05
• Noise: std=2

Slide courtesy of William Cohen 
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Linear Regression example

• Generated: w=2
• Recovered: w=2.08
• Noise: std=4

Slide courtesy of William Cohen 
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Linear Regression
Data:	Inputs	are	continuous	vectors	of	length	𝑑.	Outputs	are	
continuous scalars.	

Prediction:	Output	is	a	linear	function	of	the	inputs.

Learning:	finds	the	parameters	that	minimize	some	objective	
function.

(We	assume	𝑥! is	1)
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Least Squares
n Our	goal	is	to	learn	a	linear	function:

n We	minimize	the	sum	of	the	squares:

Reduces	distance	between	true	measurements	and	
predicted	hyperplane	(line	in	1D)	
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Least Squares
Learning:	Three	approaches	to	solving

q Approach	1:	Gradient	Descent	
(take	larger	– more	certain	– steps	opposite	the	gradient)	

q Approach	2:	Stochastic	Gradient	Descent	(SGD)	
(take	many	small	steps	opposite	the	gradient)	

q Approach	3:	Closed	Form
(set	derivatives	equal	to	zero	and	solve	for	parameters)	
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n Minimize	mean-squared	error	(MSE):	
Loss	function:	How	much	 !𝑦 differs	from	the	true	𝑦

n Calculate	the	derivatives	of										with	respect	to				
and			:

Linear Regression – loss function
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n We	have	the	closed-form	solutions

where

Linear Regression - Least Square Method 
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Multivariate Linear Regression

n Given	a	data	set

n The	objective	of	multivariate	linear	regression

such thatFind
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Multivariate Linear Regression

n Rewrite and			as																, the	data	set	is	
represented	as
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Let                                             and find the derivative with respect to    

The closed-form solution of      can be obtained by making the equation 
equal to 0.

Multivariate Linear Regression - Least 
Square Method 
p Least square method
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p If is a full-rank matrix or a positive definite 
matrix, then

where is the inverse of , the learned multivariate
linear regression model is

p is often not full-rank
l gradient descent (which is more broadly applicable)
l pseudo-inverse

Multivariate Linear Regression - Least 
Square Method 
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Learning as optimization

n The	main	idea
q Make	two	assumptions:

n the	classifier	is	linear
n we	want	to	find	the	classifier	𝜽 that	“fits	the	data	

best”	

q Formalize	as	an	optimization	problem
n Pick	a	loss	function	𝐽(𝜽, 𝒟),	and	find	argmin𝜽 𝐽(𝜽)
n OR:	Pick	a	“goodness”	function,	often	Pr(𝒟|𝜽),	and	

find	the	argmax𝜽 𝑓𝒟(𝜽)
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Learning as optimization with gradient 
ascent
n Goal:	Learn	the	parameter	𝜽 of	…	

n Dataset:	𝒟 = 𝒙!, 𝑦! … , 𝒙", 𝑦"
n Use	your	model	to	define

q Pr(𝒟|𝜽) = ….	

n Set	𝜽 to	maximize	Likelihood
q Usually	we	use	numeric	methods	to	find	the	optimum

q i.e.,	gradient	ascent: repeatedly	take	a	small	step	in	
the	direction	of	the	gradient	(direction	of	fastest
increase	in	the	function).
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Gradient ascent 

n To	find		argmax𝜽𝑓(𝜽):
q Start	with	𝜽!
q For	𝑡 = 1….	

n 𝜽"#$ = 𝜽" + 𝛼 𝑓% 𝜽"

q where	𝛼 is	a	learning	rate.
n The	larger	it	is,	the	faster	𝜽 changes.
n The	values	of	𝛼 are	typically	small,	e.g.	0.01	or	0.0001

𝜽!

𝜽"

𝜽#
𝜽$
𝜽%

Slide courtesy of William Cohen 
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Gradient descent 

n Likelihood:	ascent
n Loss:	descent

Slide courtesy of William Cohen 
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Pros and cons of gradient descent 

n Simple	and	often	quite	effective
n Often	very	scalable
n Only	applies	to	smooth	functions	(differentiable)
n Might	find	a	local	minimum,	rather	than	a	global	one	



Machine Learning Spring	Semester 23

Pros and cons of gradient descent 

There	is	only	one	local	optimum	if	the	function	is	convex
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Gradient Descent

In	order	to	apply	GD	to	Linear	
Regression	all	we	need	is	the	
gradient of	the	objective	
function	(i.e.	vector	of	partial	
derivatives).

− 𝛼
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Gradient Descent

There	are	many	possible	ways	to	detect	convergence.	For	
example,	we	could	check	whether	the	L2	norm	of	the	
gradient	is	below	some	small	tolerance.	

Alternatively	we	could	check	that	the	reduction	in	the	
objective	function	from	one	iteration	to	the	next	is	small.	

− 𝛼
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Stochastic Gradient Descent (SGD)

Applied	to	Linear	Regression,	SGD	is	called	the	Least	
Mean	Squares	(LMS)	algorithm	
We	need	a	per-example	objective:	

− 𝛼
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Partial Derivatives forLinear Reg.
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Partial Derivatives for Linear Reg.

Used	by	SGD	
(aka.	LMS)

Used	by	
Gradient	
Descent	
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Least Squares
Learning:	Three	approaches	to	solving

q Approach	1:	Gradient	Descent	
(take	larger	– more	certain	– steps	opposite	the	gradient)	
n pros:	conceptually	simple,	guaranteed	convergence	
n cons:	batch,	often	slow	to	converge

q Approach	2:	Stochastic	Gradient	Descent	(SGD)	
(take	many	small	steps	opposite	the	gradient)	
n pros:	memory	efficient,	fast	convergence,	less	prone	to	local	

optima
n cons:	convergence	in	practice	requires	tuning	and	fancier	

variants
q Approach	3:	Closed	Form

(set	derivatives	equal	to	zero	and	solve	for	parameters)	
n pros:	one	shot	algorithm!	
n cons:	does	not	scale	to	large	datasets	(matrix	inverse	is	bottleneck)
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Maximum-Likelihood Estimation
Find:	optimal	(MLE)	parameter	𝜃 of	a	binomial	
Dataset:	𝒟 = 𝑥$, … , 𝑥( ,	𝑥) is	0 or	1,	𝑘 of	them	are	1

Slide courtesy of William Cohen 
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Maximum-Likelihood Estimation
Find:	optimal	(MLE)	parameter	𝜃 of	a	binomial	
Dataset:	𝒟 = 𝑥$, … , 𝑥( ,	𝑥) is	0 or	1,	𝑘 of	them	are	1

Slide courtesy of William Cohen 
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Maximum-Likelihood Estimation
Parameters	to	be	estimated

A	set	of	i.i.d. examples

The objective function
The	likelihood	of					w.r.t.	the	
set	of	observed	examples

The maximum-likelihood estimation

Intuitively,						best	agrees	with	
the	actually	observed	examples
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Maximum-Likelihood Estimation (Cont.)
Gradient Operator (梯度算子)

ü Let																																							be	a	p-dimensional	vector

ü Let																						be	p-variate real-valued	function	over

is	named	as	the	log-likelihood	function



Machine Learning Spring	Semester 34

Maximum-Likelihood Estimation (Cont.)

p-variate real-valued	
function	over					(not	
over	xk)	

p-dimensional	vector	with	
each	component	being	a	
function	over

Necessary conditions for ML estimate
(a	set	of	p equations)
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The Gaussian Case: Unknown

suppose						is	known
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The Gaussian Case: Unknown     
(Cont.)

(necessary	condition

for	ML	estimate					)	 Multiply							on	
both	sides

Intuitive result
ML	estimate	for	the	unknown						
is	just	the	arithmetic	average	of	
training	samples	– sample	mean
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The Gaussian Case: Unknown     and

Consider	univariate case
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The Gaussian Case: Unknown     and
(Cont.)

(xk 1)

(necessary	condition
for	ML	estimate						and						)	
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The Gaussian Case: Unknown     and
(Cont.)

ML	estimate	in	univariate case
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The Gaussian Case: Unknown     and
(Cont.)

ML	estimate	in	multivariate	case

Arithmetic	average of	
n vectors

Arithmetic	average
of	n matrices

Intuitive 
result as well！
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Probabilistic Interpretation of LMS

n Let	us	assume	that	the	target	variable	and	the	inputs	are	
related	by	the	equation:	

n Now	assume	that	𝜖 follows	a	Gaussian	𝒩(0, 𝜎),	then	we	have:	

n By	independence	assumption:

where	𝜖 is	an	error	term	of	unmodeled	effects	or	random	noise	
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Probabilistic Interpretation of LMS

n Hence	the	log-likelihood	is:

n Do	you	recognize	the	last	term?	

n Thus	under	independence	assumption,	LMS	is	equivalent	to	
MLE	of	𝜽 !	

Yes	it	is:	
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Although	the	model	assumes	a	Gaussian	
distribution	in	the	prediction	(i.e.	Gaussian	noise	
function	or	error	function),	there	is	no	such	
expectation	for	the	inputs	to	the	model	(𝒙).
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Gradient Descent

n Why	gradient	descent,	if	we	can	find	the	
optimum	directly?
q GD	can	be	applied	to	a	much	broader	set	of	models

q GD	can	be	easier	to	implement	than	direct	solutions,	
especially	with automatic	differentiation	software

q For	regression	in	high-dimensional	spaces,	GD	is	more	
efficient	than

q direct	solution	(matrix	inversion	is	an	𝑂(𝐷#) algorithm).
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Log-Linear Regression
n The	logarithm	of	the	output	label	can	be	used	
for	approximation
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n The	general	form

pWhere	the	function								is	the	link	function.
q a	monotonic	differentiable	function

n Log-linear	regression	is	a	special	case	of	
generalized	linear	models	when

Linear Regression - Generalized 
Linear Model
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Feature mappings

n We	get	polynomial	regression	for	free!
n Define	the	feature	map

n Polynomial	regression	model:

n All	of	the	derivations	and	algorithms	so	far	in	
this	lecture	remain	exactly	the	same!
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Non-Linear basis function 
n So	far	we	only	used	the	observed	values	𝑥!, 𝑥$, …
n However,	linear	regression	can	be	applied	in	the	same	

way	to	functions of	these	values
q E.g.:	add	a	new	variable	𝑧 = 𝑥!𝑥" so	each	example	

becomes: 𝑥!, 𝑥", … . 𝑧
n As	long	as	these	functions	can	be	directly	computed	from	

the	observed	values	the	parameters	are	still	linear	in	the	
data	and	the	problem	remains	a	multi-variate	linear	
regression	problem

Any	function	of	the	input	values	can	be	used.	The	solution	
for	the	parameters	of	the	regression	remains	the	same.	
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An example: polynomial basis
vectors on a small dataset

– From	Bishop	Ch	1	
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0th Order Polynomial 
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1st Order Polynomial 
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3rd Order Polynomial 
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9th Order Polynomial 
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Overfitting
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Polynomial Coefficients 
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Regularization

Ridge	regression	and	Lasso
n We	can	fit	a	model	containing	all	features	using	a	

technique	that	constrains	or	regularizes	the	coefficient	
estimates,	or	equivalently,	that	shrinks	the	coefficient	
estimates	towards	zero.

n It	may	not	be	immediately	obvious	why	such	a	constraint	
should	improve	the	fit,	but	it	turns	out	that	shrinking	the	
coefficient	estimates	can	significantly	reduce	their	
variance.

Regularizer:	a	function	that	quantifies	how	much	we	prefer	
one	hypothesis	vs.	another
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Ridge Regression

where	𝜆 ≥	0	is	a	tuning	parameter,	to	be	determined	separately.

n In	contrast,	the	ridge	regression	coefficient	estimates	
are	the	values	that	minimize

n Recall	that	the	least	squares	fitting	procedure	estimates	
𝛽%, 𝛽!, . . . , 𝛽& using	the	values	that	minimize

What's	the	
solution?

𝐽 𝜷 =

𝐽𝑅𝑅 𝜷 =
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Ridge Regression

n As	with	least	squares,	ridge	regression	seeks	coefficient
estimates	that	fit	the	data	well.

n However,	the	second	term,	𝜆∑'𝛽($,	called	a	shrinkage
penalty,	is	small	when	𝛽%, 𝛽!, . . . , 𝛽& are	close	to	zero,	and	
so	it has	the	effect	of	shrinking the	estimates	of	𝛽(
towards	zero.

n The	tuning	parameter	𝜆 serves	to	control	the	relative
impact	of	these	two	terms	on	the	regression	coefficient
estimates.

n Selecting	a	good	value	for	𝜆 is	critical;	cross-validation	is
used	for	this.
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Ridge Regression

Bayesian	interpretation:	MAP	estimation	with	a	Gaussian	
prior	on	the	parameters	

where	
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Ridge Regression
n Recall	the	gradient	descent	update:

n The	gradient	descent	update	of	the	regularized	
cost	has	an	interesting	interpretation	as	weight	
decay:
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The Lasso

n In	parlance,	the	lasso	uses	an	ℓ! (pronounced	“ell	1”)	
penalty statistical	instead	of	an	ℓ$ penalty.

n Ridge	regression	does	have	one	obvious	disadvantage:		
ridge	regression	will	include	all	features	in	the	final	model

n The	Lasso	is	a	relatively	recent	alternative	to	ridge	
regression	that	overcomes	this	disadvantage.	The	lasso	
coefficients minimize	the	quantity

What's	the	
solution?



Machine Learning Spring	Semester 62

Optimization for LASSO
n The	L1	penalty	is	subdifferentiable	(i.e.	not	
differentiable	at	0)	

n An	array	of	optimization	algorithms	exist	to	
handle	this	issue:	
q Coordinate	Descent	
q Block	coordinate	Descent	(Tseng	&	Yun,	2009)
q Sparse	Reconstruction	by	Separable	Approximation	

(SpaRSA)	(Wright	et	al.,	2009)
q Fast	Iterative	Shrinkage	Thresholding	Algorithm	

(FISTA)	(Beck	&	Teboulle,	2009)	
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The Lasso
n As	with	ridge	regression,	the	lasso	shrinks	the	coefficient	

estimates	towards	zero.
n However,	in	the	case	of	the	lasso,	the	ℓ! penalty	has	the	

effect	of	forcing	some	of	the	coefficient	estimates	to	be	
exactly	equal	to	zero	when	the	tuning	parameter	λ	is	
sufficiently	large.	

n Hence,	much	like	best	subset	selection,	the	lasso	performs	
feature	selection.	

n We	say	that	the	lasso	yields	sparse models	— that	is,	
models	that	involve	only	a	subset	of	the	variables.	

n As	in	ridge	regression,	selecting	a	good	value	of	λ	for	the	
lasso	is	critical;	cross-validation	is	again	the	method	of	
choice.
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The Lasso

n Bayesian	interpretation:	MAP	estimation	with	
a	Laplace	prior	on	the	parameters

where	
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The Feature Selection Property of the 
Lasso
Why	is	it	that	the	lasso,	unlike	ridge	regression,	results	in
coefficient	estimates	that	are	exactly	equal	to	zero?

One	can	show	that	the	lasso	and	ridge	regression	coefficient
estimates	solve	the	problems

and

respectively.
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Ridge Regression vs. Lasso
Why	is	it	that	the	lasso,	unlike	ridge	regression,	results	in
coefficient	estimates	that	are	exactly	equal	to	zero?

𝐿!

𝐿$

derivativeloss
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Example: Stock Prices

n Suppose	we	wish	to	predict	Google’s	stock	price	
at	time	𝑡 + 1

n What	features	should	we	use?	(putting	all	
computational	concerns	aside)
q Stock	prices	of	all	other	stocks	at	times	𝑡, 𝑡 − 1, 𝑡 −
2,… , 𝑡 – 𝑘

q Mentions	of	Google	with	positive	/	negative	sentiment	
words	in	all	newspapers	and	social	media	outlets

n Do	we	believe	that	all	of	these	features	are	going	
to	be	useful?	
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Advantages of the Linear Model
n Simple	form	and	ease	of	modeling
n Comprehensibility
n Nonlinear	models	can	be	derived	from	linear	models

q Introducing	multi-layer	structures	or	high-dimensional	
mapping.

n An	example
q Determine	the	ripeness	of	a	watermelon	by	considering	its	

color,	root and	sound information.

q From	the	coefficients,	we	know	that	root	is	the	most	
important	variable,	and	sound	is	more	important	than	color.
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Regularization

n The	linear	model	has	distinct	advantages	in	terms	
of	its	interpretability	and	often	shows	good	
predictive	performance.

n Model	Interpretability:	By	removing	irrelevant	
features	—that	is,	by	setting	the	corresponding	
coefficient	estimates	to	zero	— we	can	obtain	a	
model	that	is	more	easily	interpreted.	We	will	
present	some	approaches	for	automatically	
performing	feature	selection.
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Summary

n Linear	regression	predicts its	output	as	a	
linear function of	its	inputs	

n Learning	optimizes a	function	(equivalently	
likelihood	or	mean	squared	error) using	
standard techniques (gradient	descent,	SGD,	
closed	form)	

n Regularization	enables	shrinkage and	model
selection


