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Lecture 3

Logistic Regression
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Outline
n Logistic Regression

n Gradient descent for Logistic Regression

n Newton's Method for Logistic Regression

n Multinomial	Logistic Regression
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Binary Classification

Suppose we're distinguishing cat from dog images
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Two Phrases of Logistic Regression

n Training:	we	learn	weights	w	and	b using	
stochastic	gradient	descent and	cross-
entropy	loss.	

n Test:	Given	a	test	example	x	we	compute	
p(y|x)	using	learned	weights	w and	b,	and	
return	whichever	label	(𝑦 = 1 𝑜𝑟 𝑦 = 0)	
is	higher	probability
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Hyperplanes
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Using gradient ascent for linear classifiers 

Key	idea	behind	today’s	lecture:	
1.	Define	a	linear	classifier	(logistic	regression)	
2.	Define	an	objective	function	(likelihood)	
3.	Optimize	it	with	gradient	descent	to	learn	
parameters	
4.	Predict	the	class	with	highest	probability	
under	the	model	
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Binary Classification
n The	predictions	and	the	output	labels

n The	real-valued	predictions	of	the	linear	regression	model	need	
to	be	converted	into	0/1.

n Ideally,	the	unit-step	function	is	desired

q which	predicts	positive	for				greater	than	0,	negative	for				smaller	
than	0,	and	an	arbitrary	output	when				equals	to	0.
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n Disadvantages	of	unit-step	function
q not	continuous

n Logistic	(sigmoid)	function:	a	surrogate	function	
to	approximate	the	unit-step	function
q monotonic	differentiable

Comparison between unit-step 
function and logistic function

Binary Classification
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Logistic Regression 
Data:	Inputs	are	continuous	vectors	of	length	𝑑.	Outputs	are	
discrete	labels.	

Model:	Logistic	function	applied	to	dot	product	of	
parameters	with	input	vector.

Learning:	finds	the	parameters	that	minimize	some	objective	
function.

Prediction:	Output	is	the	most	probable	class.
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Log odds
n Apply	logistic	function

n Log	odds
q the	logarithm	of	the	relative	likelihood	of	a	sample	being	

a	positive	sample
ln

𝑦
1 − 𝑦

= 𝒘!𝒙 + b

n Logistic	regression	has	several	nice	properties
l without	requiring	any	prior	assumptions	on	the	data	

distribution
l it	predicts	labels	together	with	associated	probabilities
l it	is	solvable	with	numerical	optimization	methods.

transform into
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Logistic regression - maximum likelihood

In statistics, maximum likelihood estimation (MLE) is a method 
of estimating the parameters of a statistical model given 
observations, by finding the parameter values that maximize 
the likelihood of making the observations given the parameters. 

MLE can be seen as a special case of the maximum a posteriori 
estimation (MAP) that assumes a uniform prior distribution of 
the parameters, or as a variant of the MAP that ignores the 
prior and which therefore is unregularized.

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Likelihood
https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Regularization_(mathematics)
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n Maximum	likelihood
q Given	the	training	dataset
q Maximizing	the	probability	of	each	sample	being	

predicted	as	the	ground-truth	label
n the	log-likelihood	to	be	maximized	is:

n assumption	that	the	training	examples	are	independent:

Logistic regression - maximum likelihood
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n Log	odds	can	be	rewritten	as	

and	consequently,

Logistic regression - maximum likelihood
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n Transform	into	minimize	negative	log-likelihood
q Let	 ， ， can	be	rewritten	

as	
q Let

the	likelihood	term	in	can	be	rewritten	as

q maximizing	log-likelihood	is	equivalent	to	minimizing

Logistic regression - maximum likelihood
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n Transform	into	minimize	negative	log-likelihood
q Let	 ， ， can	be	rewritten	

as	
q Let

the	likelihood	term	in	can	be	rewritten	as

q maximizing	log-likelihood	is	equivalent	to	minimizing

Logistic regression - maximum likelihood

The	Cross-Entropy	loss!
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Maximum Likelihood Estimation
Learning:	Four	approaches	to	solving	

q Approach	1:	Gradient	Descent	
(take	larger	– more	certain	– steps	opposite	the	gradient)	

q Approach	2:	Stochastic	Gradient	Descent	(SGD)	
(take	many	small	steps	opposite	the	gradient)	

q Approach	3:	Newton’s	Method	
(use	second	derivatives	to	better	follow	curvature)	

q Approach	4:	Closed	Form???																																									
(set	derivatives	equal	to	zero	and	solve	for	parameters)	
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Maximum Likelihood Estimation
Learning:	Four	approaches	to	solving	

q Approach	1:	Gradient	Descent	
(take	larger	– more	certain	– steps	opposite	the	gradient)	

q Approach	2:	Stochastic	Gradient	Descent	(SGD)	
(take	many	small	steps	opposite	the	gradient)	

q Approach	3:	Newton’s	Method	
(use	second	derivatives	to	better	follow	curvature)	

q Approach	4:	Closed	Form???																																									
(set	derivatives	equal	to	zero	and	solve	for	parameters)	
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Gradient Descent

− 𝛼
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Review: Derivative of a Function

hh®0
lim f (x + h) - f (x)

is	called	the derivative of f at	x.

Wewrite:
hh®0

f ¢(x) = lim f (x+ h)- f (x)

“The	derivative	of f with	respect	to	x	is …”
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Gradient Descent

w

Loss

0
w1 wmin

(goal)

Should we move
 right or left from here?
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Gradient Descent

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)
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Gradient Descent

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

one step
of gradient

descent

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 
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Gradient Descent

n Visualizing	
the	gradient	
vector	at	
the	red	
point

n It	has	two	
dimensions	
shown	in	
the	x-y	
plane
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Online Resource

n Machine Learning Lecture 12 "Gradient Descent / 
Newton's Method"

n https://www.youtube.com/watch?v=o6FfdP2uYh4

n Instructor: Kilian Weinberger @ Cornell
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Gradient for Logistic Regression
• The	cross-entropy	loss	function

• The	gradient

• Instead	of	using	the	sum	notation,	we	can	more	efficiently	
compute	the	gradient in	its	matrix	form
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Picking learning rate

n Use	grid-search	in	log-space	over	small	values	
on a	validation	set:
q e.g.,	0.01,	0.001,	…

n Sometimes,	update	after	each	pass:	
q e.g.,	decrease	by	a	factor	of	1/t
q sometimes	use	cosine	annealing	

n Fancier	techniques	we	won’t	talk	about:
q Adaptive	gradient:	scale	gradient	differently	for	

each	dimension	(Adagrad,	ADAM,	….)

Slide courtesy of Matt Gormley
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Convexity and Logistic Regression
This	loss	function	is	convex:	there	is	only	one	local	minimum.
So	gradient	descent	will	give	the	global	minimum.
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Convex function
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Strict and strong convexity

also	known	as	
Jensen’s	Inequality
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Convex function

First	Order	Condition	for	Convexity Second	Order	Condition	for	Convexity

Positive	semidefinite
Hessian matrix
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Hessian Matrix 

Slide courtesy of Matt Gormley
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n Let 𝑓:ℝ! ↦ ℝ be a twice differentiable function. Then, the 
Hessian of 𝑓 at 𝐱 ∈ ℝ! is a matrix in ℝ!×! denoted by 
𝛻"𝑓 𝐱 and defined by 

n Example: 

32

Hessian Matrix 
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Examples of convex functions
p Square Loss

n 𝑓 𝑥, 𝑣 = 𝑥 − 𝑣 #

p Absolute Loss

n 𝑓 𝑥, 𝑣 = |𝑥 − 𝑣|

p Hinge Loss

n 𝑓 𝑥, 𝑣 = max 0,1 − 𝑥𝑣

p Regularization
n 𝑟 𝑥 = $

#
𝑥 #

#

n 𝑟 𝑥 = 𝜆 𝑥 %
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The Newton’s Method

n Gradient	descent	may	take	many	steps	to	
converge to	that	optimum.	

n The	motivation	behind	Newton's	method	is	
to	use	a	quadratic	approximation	of	our	
function	to	make	a	good	guess	where	we	
should	step	next.

n From	linear	regression,	we	know	that	we	can	
find	the	minimizer to	a	quadratic	function	
analytically	(i.e.	closed	form).	
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Taylor Series
How	can	we	approximate	a	function	in	1-dimension?

Slide courtesy of Matt Gormley
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Taylor Series

Slide courtesy of Matt Gormley
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The Newton's Method
A	Taylor	expansion	around	the	current	point	𝛽
First	order:

Second	order:

set
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The Newton's Method
p We	have

p Taking	Newton’s	method	as	an	example,	the	updating	rule	at	the	
(𝑡 + 1)-th iteration	is

where	the	first- and	second-order	derivatives	with	respect	to	𝜷 are
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Newton’s Method for Linear Regression 

n Newton’s	method	applied	to	Linear	
Regression	(or	any	convex	quadratic	function)	
converges	in	exactly	1-step	to	the	true	
optimum.	

n This	is	equivalent to	solving	the	Normal	
Equations	
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GD vs. Newton's Method

The	Newton's	method	converges	much	faster	often	
but	it's	computationally	more	expensive.
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Multinomial logistic regression - Softmax

The	multinomial	logistic	classifier	uses	a	generalization	of	the	
sigmoid,	called	the	softmax function,	to	compute	𝑝 𝑦! = 1 𝒙 .

The	softmax function	takes	a	vector	𝒛 = 𝑧", 𝑧#, … , 𝑧$ of	𝐾
arbitrary	values	and	maps	them	to	a	probability	distribution,	with	
each	value	in	the	range	[0,1],	and	all	the	values	summing	to	1.	

Like	the	sigmoid,	it	is	an	exponential	function.
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Multinomial logistic regression - Softmax

For	a	vector	z of	dimensionality	K,	the	softmax is	defined	as:

The	softmax of	an	input	vector	𝒛 = 𝑧", 𝑧#, … , 𝑧$ is	thus	a	
vector	itself:
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An Example of Softmax

Given	a	vector:

the	resulting	(rounded)	softmax(z)	is

Like	the	sigmoid,	the	softmax has	the	property	of	squashing	
values	toward	0	or	1. Thus	if	one	of	the	inputs	is	larger	than	
the	others,	it	will	tend	to	push	its	probability toward	1,	and	
suppress	the	probabilities	of	the	smaller	inputs.
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Multinomial logistic regression
• When	we	apply	softmax for	logistic	regression,	we’ll	need	

separate	weight	vectors	𝒘! and	bias	𝑏! for	each	of	the	𝐾
classes.	The	probability	of	each	of	our	output	classes	 3𝑦! can	
thus	be	computed	as:

• If	we	represent	the	weights	in	matrix	and	bias	in	vectors,	
we	can	compute	4𝒚,	the	vector	of	output	probabilities	for	
each	of	the	𝐾 classes,	by	a	single	elegant	equation:

Note: for more efficient computation by modern vector processing hardware 
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Multinomial logistic regression
The	cross-entropy	loss	for	a	single	example	𝒙

negative log 
likelihood loss

Gradient of the weight vector for class 𝑘



Machine Learning Spring	Semester 46

Summary
Data:	Inputs	are	continuous	vectors	of	length	𝑑.	Outputs	are	
discrete	labels.	

Model:	Logistic	function	applied	to	dot	product	of	parameters	
with	input	vector.

Learning:	finds	the	parameters	that	minimize	some	objective	
function.

Prediction:	Output	is	the	most	probable	class.

maximum likelihood 
estimation

iterative 
optimization

sigmoid 
function


