Lecture 3 Logistic Regression

Machine Learning

Outline

- Logistic Regression
- Gradient descent for Logistic Regression
- Newton's Method for Logistic Regression
- Multinomial Logistic Regression

Binary Classification

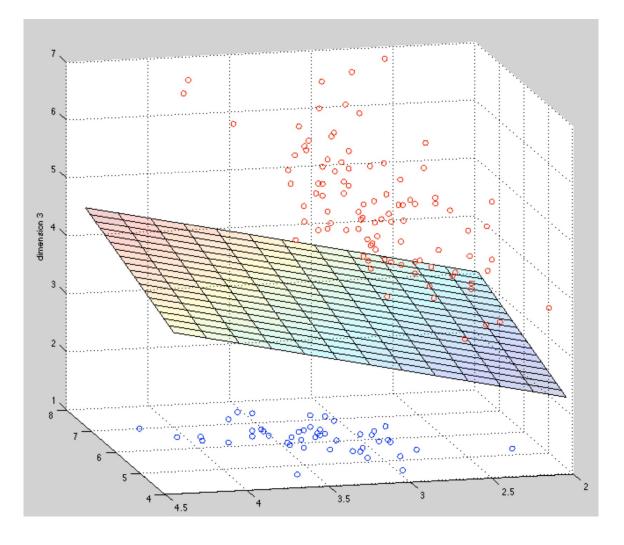
Suppose we're distinguishing cat from dog images

Machine Learning

Two Phrases of Logistic Regression

- Training: we learn weights w and b using stochastic gradient descent and crossentropy loss.
- **Test**: Given a test example *x* we compute p(y|x) using learned weights *w* and *b*, and return whichever label (y = 1 or y = 0) is higher probability

Hyperplanes



Machine Learning

Using gradient ascent for linear classifiers

Key idea behind today's lecture:

- 1. Define a linear classifier (logistic regression)
- 2. Define an objective function (likelihood)
- 3. Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

Binary Classification

The predictions and the output labels

$$z = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$
 $y \in \{0, 1\}$

- The real-valued predictions of the linear regression model need to be converted into o/1.
- Ideally, the unit-step function is desired

$$y = \begin{cases} 0, & z < 0; \\ 0.5, & z = 0; \\ 1, & z > 0, \end{cases}$$

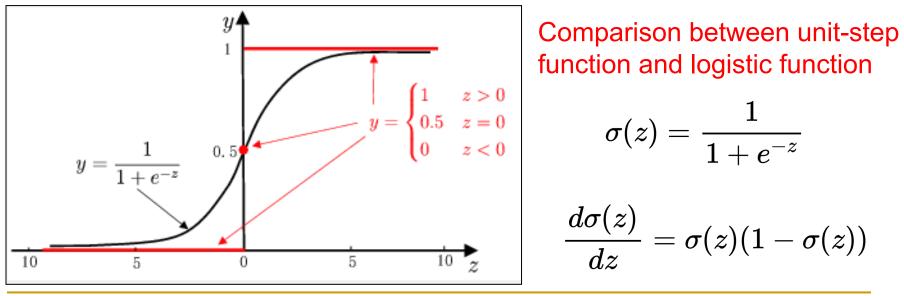
 which predicts positive for z greater than o, negative for z smaller than o, and an arbitrary output when z equals to o.

Machine Learning

Binary Classification

- Disadvantages of unit-step function
 - not continuous
- Logistic (sigmoid) function: a surrogate function to approximate the unit-step function

monotonic differentiable



Machine Learning

Logistic Regression

Data: Inputs are continuous vectors of length d. Outputs are discrete labels.

$$\mathcal{D} = \left\{oldsymbol{x}^{(i)}, y^{(i)}
ight\}_{i=1}^m ext{ where }oldsymbol{x} \in \mathbb{R}^d ext{ and } y \in \{0,1\}$$

Model: Logistic function applied to dot product of parameters with input vector. $p_{\theta}(y = 1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$

Learning: finds the parameters that minimize some objective function. $\theta^* = \arg\min_{\theta} J(\theta)$

Prediction: Output is the most probable class. $\hat{y} = \underset{y \in \{0,1\}}{\operatorname{argmax}} p_{\theta}(y|\mathbf{x})$

Machine Learning

Log odds

Apply logistic function

$$y = rac{1}{1+e^{-z}}$$
 transform into $y = rac{1}{1+e^{-(oldsymbol{w}^Toldsymbol{x}+b)}}$

- Log odds
 - the logarithm of the relative likelihood of a sample being a positive sample

$$\ln \frac{y}{1-y} = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + \mathbf{b}$$

- Logistic regression has several nice properties
 - without requiring any prior assumptions on the data distribution
 - it predicts labels together with associated probabilities
 - it is solvable with numerical optimization methods.

In statistics, **maximum likelihood estimation** (**MLE**) is a method of <u>estimating</u> the <u>parameters</u> of a <u>statistical model</u> given observations, by finding the parameter values that maximize the <u>likelihood</u> of making the observations given the parameters.

MLE can be seen as a special case of the <u>maximum a posteriori</u> <u>estimation</u> (MAP) that assumes a <u>uniform prior distribution</u> of the parameters, or as a variant of the MAP that ignores the prior and which therefore is <u>unregularized</u>.

- Maximum likelihood
 - Given the training dataset $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^m$
 - Maximizing the probability of each sample being predicted as the ground-truth label
 - the log-likelihood to be maximized is:

$$\ell(oldsymbol{w},b) = \log \prod_{i=1}^m p(y_i \mid oldsymbol{x}_i;oldsymbol{w},b)$$

assumption that the training examples are independent:

$$\ell(oldsymbol{w},b) = \sum_{i=1}^m \log p(y_i \mid oldsymbol{x}_i;oldsymbol{w},b)$$

Machine Learning

Log odds can be rewritten as

$$\ln rac{p(y=1 \mid oldsymbol{x})}{p(y=0 \mid oldsymbol{x})} = oldsymbol{w}^{\mathrm{T}}oldsymbol{x} + b$$

and consequently,

$$p(y=1 \mid oldsymbol{x}) = rac{e^{oldsymbol{w}^{ ext{T}}oldsymbol{x}+b}}{1+e^{oldsymbol{w}^{ ext{T}}oldsymbol{x}+b}} = ext{sigmoid}(oldsymbol{w}^{ ext{T}}oldsymbol{x}+b)$$

$$p(y = 0 \mid oldsymbol{x}) = rac{1}{1 + e^{oldsymbol{w}^{ ext{T}}oldsymbol{x} + b}} = 1 - ext{sigmoid}(oldsymbol{w}^{ ext{T}}oldsymbol{x} + b)) = ext{sigmoid}(-(oldsymbol{w}^{ ext{T}}oldsymbol{x} + b))$$

Machine Learning

- Transform into minimize negative log-likelihood
 - Let $\boldsymbol{\beta} = (\boldsymbol{w}; b)$, $\hat{\boldsymbol{x}} = (\boldsymbol{x}; 1)$, $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b$ can be rewritten as $\boldsymbol{\beta}^{\mathrm{T}}\hat{\boldsymbol{x}}$
 - Let $p_1(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta}) = p(y=1 \mid \hat{\boldsymbol{x}};\boldsymbol{\beta})$

$$p_0(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta}) = p(y=0 \mid \hat{\boldsymbol{x}};\boldsymbol{\beta}) = 1 - p_1(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta})$$

the likelihood term in can be rewritten as

$$p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}_i, b) = y_i p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) + (1 - y_i) p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta})$$

maximizing log-likelihood is equivalent to minimizing

$$J(oldsymbol{eta}) = \sum_{i=1}^m \Bigl(-y_i oldsymbol{eta}^{\mathrm{T}} \hat{oldsymbol{x}}_i + \log\Bigl(1+e^{eta^{\mathrm{T}} \hat{oldsymbol{x}}_i}\Bigr) \Bigr)$$

Machine Learning

- Transform into minimize negative log-likelihood
 - Let $\boldsymbol{\beta} = (\boldsymbol{w}; b)$, $\hat{\boldsymbol{x}} = (\boldsymbol{x}; 1)$, $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$ can be rewritten as $\boldsymbol{\beta}^{\mathrm{T}}\hat{\boldsymbol{x}}$
 - Let $p_1(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta}) = p(y=1 \mid \hat{\boldsymbol{x}};\boldsymbol{\beta})$

$$p_0(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta}) = p(y=0 \mid \hat{\boldsymbol{x}};\boldsymbol{\beta}) = 1 - p_1(\hat{\boldsymbol{x}}_i;\boldsymbol{\beta})$$

the likelihood term in can be rewritten as

$$p(y_i \mid \hat{oldsymbol{x}}_i; \hat{oldsymbol{w}}_i, b) = p_1(\hat{oldsymbol{x}}_i; oldsymbol{eta})^{y_i} p_0(\hat{oldsymbol{x}}_i; oldsymbol{eta})^{1-y_i}$$

maximizing log-likelihood is equivalent to minimizing m

$$J(oldsymbol{eta}) = \sum_{i=1}^{m} -[y_i \log p_1(\hat{oldsymbol{x}}_i;oldsymbol{eta}) + (1-y_i) \log p_0(\hat{oldsymbol{x}}_i;oldsymbol{eta})]$$

The Cross-Entropy loss!

The Cross-Entropy loss:

Machine Learning

Maximum Likelihood Estimation

Learning: Four approaches to solving $\beta^* = \arg \min_{\beta} J(\beta)$

- Approach 1: Gradient Descent
 (take larger more certain steps opposite the gradient)
- Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)
- Approach 3: Newton's Method (use second derivatives to better follow curvature)
- Approach 4: Closed Form???
 (set derivatives equal to zero and solve for parameters)

Maximum Likelihood Estimation

Learning: Four approaches to solving $\beta^* = \arg \min_{\beta} J(\beta)$

- Approach 1: Gradient Descent
 (take larger more certain steps opposite the gradient)
- Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)
- Approach 3: Newton's Method (use second derivatives to better follow curvature)

Approach 4: Closed Form???
 (set derivatives equal to zero and solve for parameters)

Algorithm 1 Gradient Descent

1: procedure
$$GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$$

2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$

2:
$$\boldsymbol{\theta} \leftarrow$$

while not converged do 3: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ 4:

return θ 5:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_1} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_N} J(\boldsymbol{\theta}) \end{bmatrix}$$

$$oldsymbol{ heta}^{t+1} = oldsymbol{ heta}^t - \eta
abla J_{oldsymbol{ heta}}(oldsymbol{ heta}))$$

-10 -10

160 140

Machine Learning

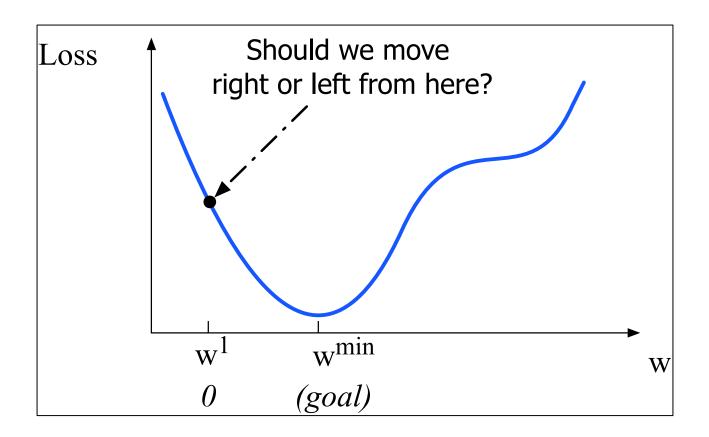
Review: Derivative of a Function

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 is called the derivative of f at x .

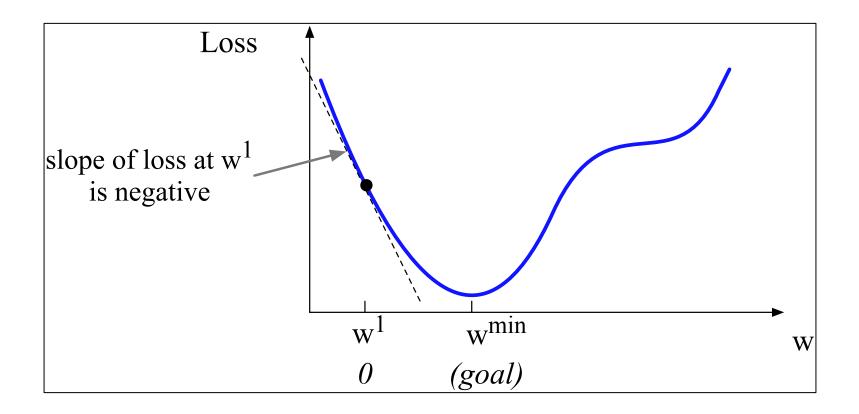
We write:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

"The derivative of f with respect to x is ..."

Machine Learning



Machine Learning



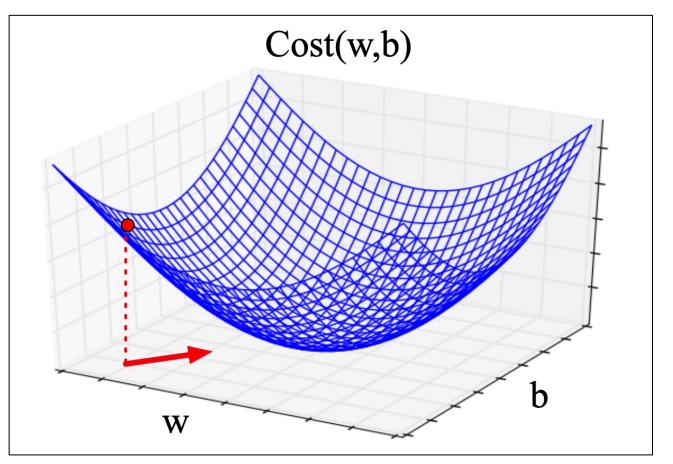
Machine Learning

Q: Given current w, should we make it bigger or smaller? A: Move *w* in the reverse direction from the slope of the function



Machine Learning

- Visualizing the gradient vector at the red point
- It has two dimensions shown in the x-y plane



Online Resource

- Machine Learning Lecture 12 "Gradient Descent / Newton's Method"
- https://www.youtube.com/watch?v=o6FfdP2uYh4
- Instructor: Kilian Weinberger @ Cornell

Gradient for Logistic Regression

• The cross-entropy loss function

$$J(oldsymbol{eta}) \, = \sum_{i=1}^m -[y_i \log p_1(\hat{oldsymbol{x}}_i;oldsymbol{eta}) + (1-y_i) \log p_0(\hat{oldsymbol{x}}_i;oldsymbol{eta})]$$

• The gradient

$$rac{\partial J(oldsymbol{eta})}{\partial oldsymbol{eta}} = -\sum_{i=1}^m \hat{oldsymbol{x}}_i(y_i - p_1(\hat{oldsymbol{x}}_i;oldsymbol{eta}))$$

• Instead of using the sum notation, we can more efficiently compute the gradient in its matrix form

$$rac{\partial J(oldsymbol{eta})}{\partialoldsymbol{eta}} \!=\! \mathbf{X}(\sigma(\mathbf{X}^Toldsymbol{eta}) - \mathbf{y})$$

 $\mathbf{X} \in \mathbb{R}^{d imes m}$ $\sigma: ext{sigmoid}$

Machine Learning

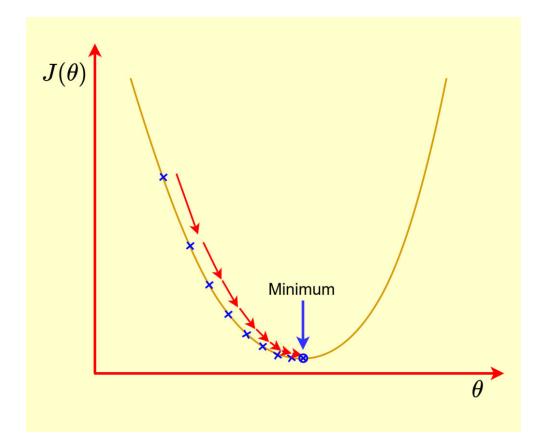
Picking learning rate

- Use grid-search in log-space over small values on a validation set:
 - e.g., 0.01, 0.001, ...
- Sometimes, update after each pass:
 - □ e.g., decrease by a factor of 1/t
 - sometimes use cosine annealing
- Fancier techniques we won't talk about:
 - Adaptive gradient: scale gradient differently for each dimension (Adagrad, ADAM,)

Slide courtesy of Matt Gormley

Convexity and Logistic Regression

This loss function is convex: there is only one local minimum. So gradient descent will give the global minimum.

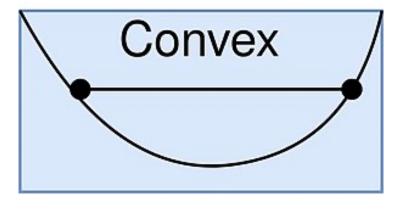


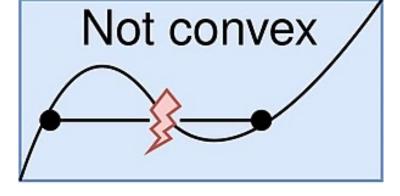
Machine Learning

Convex function

Definition 1. A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if its domain is a convex set and for all x, y in its domain, and all $\lambda \in [0, 1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$





• e^{ax}

• $-\log(x)$

Machine Learning

Strict and strong convexity

Definition 2. A function $f : \mathbb{R}^n \to \mathbb{R}$ is

also known as Jensen's Inequality

• Strictly convex if $\forall x, y, x \neq y, \forall \lambda \in (0, 1)$

 $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$

• Strongly convex, if $\exists \alpha > 0$ such that $f(x) - \alpha ||x||^2$ is convex.

Lemma 1. Strong convexity \Rightarrow Strict convexity \Rightarrow Convexity. (But the converse of neither implication is true.)

Machine Learning

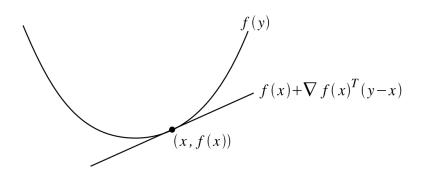
Convex function

Theorem 2. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable over an open domain. Then, the following are equivalent:

(i) f is convex.

(ii)
$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
, for all $x, y \in dom(f)$

(iii) $\nabla^2 f(x) \succeq 0$, for all $x \in dom(f)$.



Positive semidefinite Hessian matrix

 $\nabla^2 f(x) \succeq 0$

First Order Condition for Convexity

Second Order Condition for Convexity

Machine Learning

Hessian Matrix

Definition: the **Hessian** of a K-dimensional function is the matrix of partial second derivatives with respect to each pair of dimensions.

$$H_{f}(\mathbf{x}) := \nabla^{2} f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{K}} \\ \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{2} \partial x_{K}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{K} \partial x_{1}} & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{K} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{K}^{2}} \end{bmatrix}$$

Slide courtesy of Matt Gormley

Machine Learning

Hessian Matrix

• Let $f: \mathbb{R}^d \mapsto \mathbb{R}$ be a twice differentiable function. Then, the Hessian of f at $\mathbf{x} \in \mathbb{R}^d$ is a matrix in $\mathbb{R}^{d \times d}$ denoted by $\nabla^2 f(\mathbf{x})$ and defined by

$$\nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial x_i, x_j}(\mathbf{x})\right]_{1 \le i, j \le d}$$

• Example: $f(\mathbf{x}) = -\sum_{i=1}^{d} x_i \ln x_i$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} -(\ln x_1 + 1) \\ \vdots \\ -(\ln x_d + 1) \end{bmatrix} \implies \nabla^2 f(\mathbf{x}) = \operatorname{diag}(-\frac{1}{x_1}, \dots, -\frac{1}{x_d})$$

Machine Learning

Examples of convex functions

Square Loss

•
$$f(x,v) = (x-v)^2$$

- Absolute Loss
 - f(x,v) = |x-v|
- Hinge Loss

$$f(x,v) = \max(0,1-xv)$$

Regularization

•
$$r(x) = \frac{\lambda}{2} ||x||_2^2$$

 $r(x) = \lambda \|x\|_1$

The Newton's Method

- Gradient descent may take many steps to converge to that optimum.
- The motivation behind Newton's method is to use a quadratic approximation of our function to make a good guess where we should step next.
- From linear regression, we know that we can find the minimizer to a quadratic function analytically (i.e. closed form).

Taylor Series

How can we approximate a function in 1-dimension?

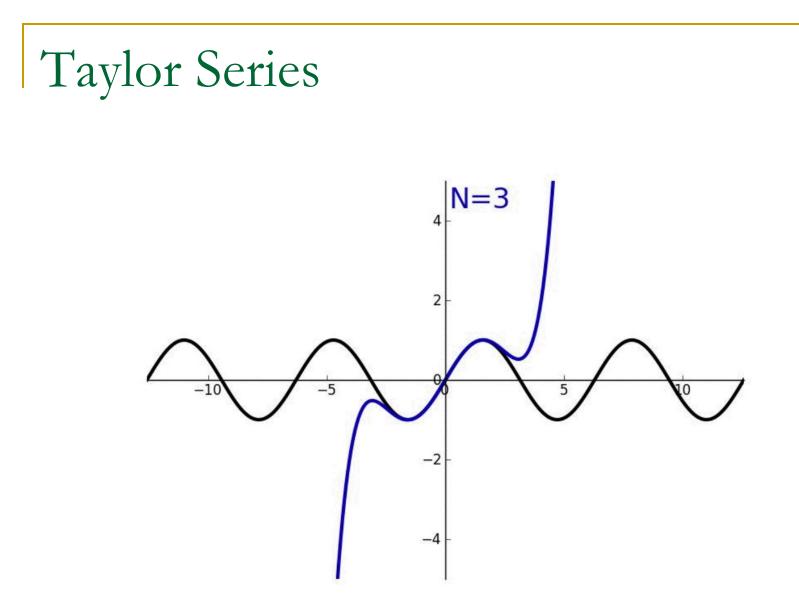
The **Taylor series expansion** for an infinitely differentiable function f(x), $x \in \mathbb{R}$, about a point $v \in \mathbb{R}$ is: $f(x) = f(v) + \frac{(x-v)f'(x)}{1!} + \frac{(x-v)^2 f''(x)}{2!} + \frac{(x-v)^3 f'''(x)}{3!} + \dots$

The **2nd-order Taylor series approximation** cuts off the expansion after the quadratic term:

$$f(x) \approx f(v) + \frac{(x-v)f'(x)}{1!} + \frac{(x-v)^2 f''(x)}{2!}$$

Slide courtesy of Matt Gormley

Machine Learning



Slide courtesy of Matt Gormley

Machine Learning

The Newton's Method

A Taylor expansion around the current point β First order: $J(\beta + s) \approx J(\beta) + g(\beta)^{\top} s$

Second order: $J(\beta + s) \approx J(\beta) + g(\beta)^{\top}s + \frac{1}{2}s^{\top}H(\beta)s$



 \checkmark set $\nabla J(\beta + s) = 0$ $s=-H^{-1}q(eta)$ Algorithm 1 Newton-Raphson Method 1: procedure NR($\mathcal{D}, \boldsymbol{\theta}^{(0)}$) $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$ 2: Initialize parameters while not converged do 3: 4: $\mathbf{g} \leftarrow \nabla J(\boldsymbol{\theta})$ 5: $\mathbf{H} \leftarrow \nabla^2 J(\boldsymbol{\theta})$ 6: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \mathbf{H}^{-1}\mathbf{g}$ Compute gradient ▷ Compute Hessian $oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \mathbf{H}^{-1}\mathbf{g}$ ▷ Update parameters return θ 7:

Machine Learning

The Newton's Method

$$lacksquare$$
 We have $oldsymbol{eta}^* = rgmin_{oldsymbol{eta}} \ell(oldsymbol{eta})$

Taking Newton's method as an example, the updating rule at the (t + 1)-th iteration is

$$oldsymbol{eta}^{t+1} = oldsymbol{eta}^t - \left(rac{\partial^2 \ell(oldsymbol{eta})}{\partial oldsymbol{eta} \partial oldsymbol{eta}^{ ext{T}}}
ight)^{-1} rac{\partial \ell(oldsymbol{eta})}{\partial oldsymbol{eta}}$$

where the first- and second-order derivatives with respect to $\boldsymbol{\beta}$ are

$$rac{\partial J(oldsymbol{eta})}{\partial oldsymbol{eta}} = -\sum_{i=1}^m \hat{oldsymbol{x}}_i(y_i - p_1(\hat{oldsymbol{x}}_i;oldsymbol{eta}))$$

$$rac{\partial^2 J(oldsymbol{eta})}{\partial oldsymbol{eta} \partial oldsymbol{eta}^{\mathrm{T}}} \!=\! \sum_{i=1}^m \hat{oldsymbol{x}}_i \hat{oldsymbol{x}}_i^{\mathrm{T}} p_1(\hat{oldsymbol{x}}_i;oldsymbol{eta})(1-p_1(\hat{oldsymbol{x}}_i;oldsymbol{eta}))$$

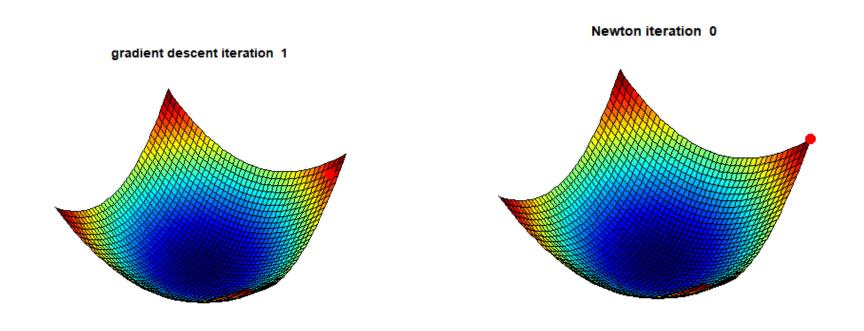
Machine Learning

Newton's Method for Linear Regression

- Newton's method applied to Linear Regression (or any convex quadratic function)
 converges in exactly 1-step to the true optimum.
- This is equivalent to solving the Normal Equations

GD vs. Newton's Method

The Newton's method converges much faster often but it's computationally more expensive.



Machine Learning

Multinomial logistic regression - Softmax

The multinomial logistic classifier uses a generalization of the sigmoid, called the **softmax** function, to compute $p(y_k = 1 | \mathbf{x})$.

The **softmax** function takes a vector $\mathbf{z} = [z_1, z_2, ..., z_K]$ of K arbitrary values and maps them to a probability distribution, with each value in the range [0,1], and all the values summing to 1.

Like the sigmoid, it is an exponential function.

Multinomial logistic regression - Softmax

For a vector **z** of dimensionality *K*, the softmax is defined as:

softmax(
$$\mathbf{z}_i$$
) = $\frac{\exp(\mathbf{z}_i)}{\sum_{j=1}^{K} \exp(\mathbf{z}_j)}$ $1 \le i \le K$

The softmax of an input vector $\mathbf{z} = [z_1, z_2, ..., z_K]$ is thus a vector itself:

softmax(
$$\mathbf{z}$$
) = $\left[\frac{\exp(\mathbf{z}_1)}{\sum_{i=1}^{K} \exp(\mathbf{z}_i)}, \frac{\exp(\mathbf{z}_2)}{\sum_{i=1}^{K} \exp(\mathbf{z}_i)}, ..., \frac{\exp(\mathbf{z}_K)}{\sum_{i=1}^{K} \exp(\mathbf{z}_i)}\right]$

Machine Learning

An Example of Softmax

Given a vector:

$$\mathbf{z} = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

the resulting (rounded) softmax(z) is

 $\left[0.055, 0.090, 0.006, 0.099, 0.74, 0.010\right]$

Like the sigmoid, the softmax has the property of squashing values toward o or 1. Thus if one of the inputs is larger than the others, it will tend to push its probability toward 1, and suppress the probabilities of the smaller inputs.

Multinomial logistic regression

 When we apply softmax for logistic regression, we'll need separate weight vectors w_k and bias b_k for each of the K classes. The probability of each of our output classes ŷ_k can thus be computed as:

$$p(y_k = 1 \mid oldsymbol{x}) = rac{\exp(oldsymbol{w}_k \cdot oldsymbol{x} + b_k)}{\sum_{j=1}^K \exp(oldsymbol{w}_j \cdot oldsymbol{x} + b_j)}$$

• If we represent the weights in matrix and bias in vectors, we can compute \hat{y} , the vector of output probabilities for each of the *K* classes, by a single elegant equation:

$$\hat{m{y}} = ext{softmax}(m{W}^Tm{x} + m{b})$$

Note: for more efficient computation by modern vector processing hardware

Multinomial logistic regression

The cross-entropy loss for a single example x

$$\ell_{ ext{CE}}(\hat{oldsymbol{y}},oldsymbol{y}) = -\sum_{k=1}^{K} y_k \log \hat{y}_k \quad (y_c = 1 ext{ and } y_j = 0, orall j
eq c) \ = -\log \hat{y}_c \quad (ext{ where } c ext{ is the correct class}) \ = -\log \hat{y}(y_c = 1 \mid oldsymbol{x}) \ = -\log \hat{p}(y_c = 1 \mid oldsymbol{x}) \ = -\log rac{\exp(oldsymbol{w}_c \cdot oldsymbol{x} + b_c)}{\sum_{j=1}^{K} \exp(oldsymbol{w}_j \cdot oldsymbol{x} + b_j)}$$

Gradient of the weight vector for class k

$$egin{aligned} rac{\partial \ell_{ ext{CE}}}{\partial oldsymbol{w}_k} &= -(y_k - \hat{y}_k)oldsymbol{x} \ &= -(y_k - p(y_k = 1 \mid oldsymbol{x}))oldsymbol{x} \ &= -igg(oldsymbol{w}_k \cdot oldsymbol{x} + b_k) \ &\sum_{j=1}^K \exp(oldsymbol{w}_j \cdot oldsymbol{x} + b_j)igg)oldsymbol{x} \end{aligned}$$

Machine Learning

Summary

Data: Inputs are continuous vectors of length *d*. Outputs are discrete labels.

$$\mathcal{D} = \left\{oldsymbol{x}^{(i)}, y^{(i)}
ight\}_{i=1}^m ext{ where }oldsymbol{x} \in \mathbb{R}^d ext{ and } y \in \{0,1\}$$

Model: Logistic function applied to dot product of parameters with input vector. $p(y = 1 \mid \boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\beta}^T \boldsymbol{x})}$ sigmoid

Prediction: Output is the most probable class.

$$\hat{y} = rg\max_{y \in \{0,1\}} p(y \mid oldsymbol{x})$$

Machine Learning

function