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Linear Discriminant Analysis [Fisher, 1936]

Given	a	training	data	set	𝒙!, . . . , 𝒙" ∈ ℝ# consisting	of	two	classes,	
find a	(unit-vector)	direction	that	“best”	discriminates	between	the	
two	classes.

LDA	is	a	supervised	
dimensionality	reduction	
method	that	tries	to	preserve	
the	discriminatory	
information	between	classes.
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Linear Discriminant Analysis [Fisher, 1936]

n First,	observe	that	projections	of	the	two	classes	onto	
parallel	lines	always	have	“the	same	amount	of	separation”.	

n This	time	we	are	going	to	focus	on	lines	that	pass	through	
the	origin.

n Consider	any	unit	vector	𝒘 ∈ ℝ#,	the	1D	projections	of	the	
points	are

𝑎$ = 𝒘%𝒙$, 𝑖 = 1,… , 𝑛
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Linear Discriminant Analysis [Fisher, 1936]

Now	the	data	look	like	this:

How	do	we	quantify	the	
separation	between	the	two	
classes	(in	order	to	compare	
different	directions	v	and	
select	the	best	one)?

One	(naive)	idea	is	to	measure	
the	distance	between	the	two	
class	means	in	the	1D	projection	
space:	|𝜇! − 𝜇&|,	where

and	similarly,
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Linear Discriminant Analysis [Fisher, 1936]

That	is,	we	solve	the	following	problem

where

However,	this	criterion	does	not	always
work	(as	shown	in	the	right	plot).

What	else	do	we	need	to	control?

𝒎! 𝒎"

𝜇!
𝜇"

𝜇′! 𝜇′"
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Linear Discriminant Analysis [Fisher, 1936]

It	turns	out	that	we	should	also	pay	attention	to	the	variances of	the	
projected	classes:

Ideally,	the	projected	classes	have	both	faraway	means	and	small	variances.

This	can	be	achieved	through	the	following	modified	formulation:

The	optimal	𝒘 should	be	such	that

• 𝑢! − 𝑢" ":	large
• 𝑠!", 𝑠"":	both	small
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Linear Discriminant Analysis [Fisher, 1936]

First,	we	derive	a	formula	for	the	distance	between	the	two	projected	
centroids:

where

is	called	the	between-class	scatter	matrix.

Remark.	Clearly,	𝑺# is	square,	symmetric	and	positive	semidefinite.	
Moreover,	rank(𝑺#)	=	1,	which	implies	that	it	only	has	1 positive	eigenvalue!
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Linear Discriminant Analysis [Fisher, 1936]

Next,	for	each	class	𝑗 = 1, 2,	the	variance	of	the	projection	(onto	𝒘)	is

where

is	called	the	within-class	scatter	matrix	for	class	𝑗.
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Linear Discriminant Analysis [Fisher, 1936]

The	total	within-class	scatter	of	the	two	classes	in	the	projection	space	is

where

is	called	the	total	within-class	scatter	matrix	of	the	original	data.

Remark.	𝑺$ ∈ ℝ%×% is	also	square,	symmetric,	and	positive	semidefinite.
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Linear Discriminant Analysis [Fisher, 1936]

Putting	everything	together,	we	have	derived	the	following	optimization	
problem:

Generalized	Rayleigh	quotient	
(广义瑞利商)	

Theorem.	Suppose	𝑺$ is	nonsingular.	The	maximizer	of	the	problem	is	given
by	the	largest	eigenvector	𝒘! of	𝑺$'!𝑺#,	i.e.,

Remark.	rank(𝑺$'!𝑺#)	=	rank(𝑺#)	=	1,	so	𝜆! is	the	only	nonzero	(positive)	
eigenvalue	that	can	be	found.	It	represents	the	largest	amount	of	separation	
between	the	two	classes	along	any	single	direction.
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Linear Discriminant Analysis [Fisher, 1936]

n Generalized	Rayleigh	quotient (广义瑞利商)	

n Let ,	maximizing	generalized	Rayleigh	
quotient	is	equivalent	to

n Using	the	method	of	Lagrangian multipliers
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Linear Discriminant Analysis [Fisher, 1936]

Instead of solving a	generalized	eigenvalue	problem,	a	smartest	way	is	to	
rewrite	as

This	implies	that

and	it	can	be	computed	from																																		through	rescaling!

Remark.	Here,	inverting	𝑺$ can	be	done	through	singular	value	
decomposition
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Singular Value Decomposition
Singular	Value	Decomposition (奇异值分解，SVD)
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Singular Value Decomposition
n Applications of SVD, e.g., low-rank	matrix	approximation

SVD	can provide	an	analytical	solution:
• Performing SVD	on	A;
•

• the	optimal solution:

(i.e., keep	only	the	k	largest	singular	values)
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n The	idea	of	LDA:	project	the	same	class	samples	onto	a	line,	
while	samples	of	different	classes	are	far	away	from	each	other.
q To	make	the	projection	of	similar	samples	as	close	as	possible,	we	can	

make	the	covariance	of	the	projection	points	of	similar	samples	as	
small	as	possible

q To	make	the	projection	of	samples	from	different	classes	as	far	away	
as	possible,	we	can	make	the	distance	between	the	class	centers	as	
large	as	possible

Linear Discriminant Analysis
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Extend LDA to multiclass
The	global	scatter	matrix:

We	have	arrived	at	the	same	kind	of	problem:

The	solution	is	given	by	the	largest	eigenvector	of	𝑺$'!𝑺# (𝑺# is	nonsingular):

However,	the	formula																																				is	no	longer	valid:
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Extend LDA to multiclass
The	solution	is	given	by	the	largest	eigenvector	of	𝑺$'!𝑺# (𝑺# is	nonsingular):

However,	the	formula																																				is	no	longer	valid:

So	we	have	to	find	𝒘! by	solving	a	generalized	eigenvalue	problem:
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Extend LDA to multiclass
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Extend LDA to multiclass

What	about	the	second	eigenvector	𝒘𝟐?
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Extend LDA to multiclass

How	many	discriminatory	directions	can	we	find?

To	answer	this	question,	we	just	need	to	count	the	number	of	nonzero	eigenvalues

since	only	the	nonzero	eigenvectors	will	be	used	as	the	discriminatory	directions.

In	the	above	equation,	the	within-class	scatter	matrix	𝑺! is	assumed	to	be	
nonsingular.	However,	the	between-class	scatter	matrix	𝑺" is	of	low	rank:
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Extend LDA to multiclass

Observe	that	the	columns	of	the	matrix

are	linearly	dependent:

The	shows	that	rank(𝑺")	≤ 𝑐 − 1 (where	𝑐 is	the	number	of	training	classes).

Therefore,	one	can	only	find	at	most	𝑐 − 1 discriminatory	directions.
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n Objective

where

Concatenating	the	eigenvectors	corresponding	to	the	𝑑′ largest	
non-zero	eigenvalues	of															leads	to	the	closed-form	
solution	of	𝐖,	where	𝑑- ≤ c − 1

Extend LDA to multiclass
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LDA for classification

n Explain	from	the	aspect	of	Bayesian	decision	
theory
q It	can	be	proved	that	we	have	the	optimal	
solution	of	LDA	when	both	classes	follow	
Gaussian	distribution	with	the	same	prior	and	
covariance
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Bayes Theorem for Classification
Thomas	Bayes	was	a	famous	mathematician	whose	name	
represents	a	big	subfield	of	statistical	and	probabilistic	
modeling.	Here	we	focus	on	a	simple	result,	known	as	
Bayes	theorem:

One	writes	this	slightly	differently	for	discriminant	analysis:

where	

• 𝑓. 𝑥 = Pr(𝑋 = 𝑥 ∣ 𝑌 = 𝑘) is	the	density	for	X in	class	k.	
Here	we	will	use	normal	densities	for	these,	separately	in									
each	class.
• 𝜋. = Pr 𝑌 = 𝑘 is	the	marginal	or	prior	probability	for	class	k.
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Classify to the highest density

• When	the	priors	are	different,	we	take	them	into	account	as	
well,	and	compare	𝜋. 𝑓.(𝑥).	On	the	right,	we	favor	the	pink	
class	— the	decision	boundary	has	shifted	to	the	left.

• We	classify	a	new	point	according	to	which	density	is	highest



Machine Learning Spring	Semester 26

Linear Discriminant Analysis (p = 1)

The	Gaussian	density	has	the	form

Here 𝜇. is	the	mean,	and	𝜎.& the	variance	(in	class	𝑘).	We	
will	assume	that	all	the	𝜎. = 𝜎 are	the	same.
Plugging	this	into	Bayes	formula,	we	get	a	rather	complex	
expression	for	𝑝.(𝑥) = Pr(𝑌 = 𝑘 ∣ 𝑋 = 𝑥):

Happily,	there	are	simplifications	and	cancellations.
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Discriminant functions
To	classify	at	the	value	𝑋 = 𝑥,	we	need	to	see	which	of	the	
𝑝𝑘(𝑥) is	largest.	Taking	logs,	and	discarding	terms	that	do	not	
depend	on	𝑘,	we	see	that	this	is	equivalent	to	assigning	𝑥 to	
the	class	with	the	largest	discriminant	score:

Note	that	𝛿.(𝑥) is	a	linear function	of	𝑥.

If	there	are	𝐾 = 2 classes	and	𝜋! = 𝜋& = 0.5,	then	one	can	
see	that	the	decision	boundary	is	at

(See	if	you	can	show	this)
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Discriminant functions

Example	with	µ! = −1.5, µ& = 1.5, 𝜋! = 𝜋& = 0.5,	and	𝜎& = 1
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Discriminant functions

• Example	with	µ! = −1.5, µ& = 1.5, 𝜋! = 𝜋& = 0.5,	and	𝜎& = 1

• Typically	we	don’t	know	these	parameters;	we	just	have	the	
training	data.	In	that	case	we	simply	estimate	the	parameters	
and	plug	them	into	the	rule.
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Estimating the parameters

where	 H𝜎.& =
!

"!/!
∑$:1"2. 𝑥$ − 𝜇̂.

& is	the	usual	formula	for	
the	estimated	variance	in	the	k-th class.
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Linear Discriminant Analysis (p > 1)
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The decision rule of LDA

where	𝛿.(𝑥) is	the	estimated	discriminant	function	of	class	𝑘,

Despite	its	complex	form,
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LDA computations and sphering
Note	that	LDA	equivalently	minimizes	over 𝑘 = 1,… , 𝐾

It	helps	to	factorize	Σ (i.e.,	compute	its	eigendecomposition):

where	𝑈 ∈ ℝ3×3 has	orthonormal	columns	(and	rows),	and		
𝐷 = diag(𝑑!, . . . 𝑑3) with	𝑑5 ≥ 0 for	each	𝑗.	Then	we	have	Σ/! =
𝑈𝐷/!𝑈%,	and

This	is	just	the	squared	distance	between	 T𝑥 and	T𝑢.
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LDA procedure summarized 
n Compute	the	sample	estimates	𝜋., 𝜇., Σ
n Factor	Σ,	as	in	Σ = 𝑈𝐷𝑈%

n Transform	the	class	centroids	T𝑢. = 𝐷/!/&𝑈%𝜇.
n Given	any	point	𝑥 ∈ ℝ3,	transform	to	 T𝑥 = 𝐷/!/&𝑈%𝑥 ∈ ℝ3,

and	then	classify	according	to	the	nearest	centroid	in	the	
transformed	space,	adjusting	for	class	proportions—this	is	
the	class	𝑘 for	which	!& | T𝑥 − T𝑢. |&& − log 𝜋. is	smallest

What	is	this	transformation	doing?	
T𝑥 = 𝐷/!/&𝑈%𝑥, 𝑖 = 1,… , 𝑛

This	is	basically	sphering the	data	points,	because	if	we	think	of	
𝑥 ∈ ℝ3 were	a	random	variable	with	covariance	matrix	Σ,	then
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Linear subspace spanned by sphered centroids
LDA	compares	the	quantity	!& | T𝑥 − T𝑢. |&& − log 𝜋. across	the	
classes	𝑘 = 1,… , 𝐾.	Consider	the	affine	subspace	𝑀 ⊆ ℝ3
spanned	by	the	transformed	centroids	T𝑢!, … , T𝑢7,	which	has	
dimension	𝐾 − 1

For	any	 T𝑥 ∈ ℝ3,	we	can	decompose
T𝑥 = 𝑃8 T𝑥 + 𝑃8# T𝑥,	so

The	second	term	doesn’t	depend	on	𝑘
What	this	is	telling	us:	the	LDA	classification	rule	is	
unchanged	if	we	project the	points	to	be	classified	onto	𝑀,	
since	the	distances	orthogonal	to	𝑀 don’t	matter
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LDA procedure summarized

n Compute	the	sample	estimates	𝜋., 𝜇., Σ

n Make	two	transformations:	first,	sphere	the	data	points,	
based	on	factoring	Σ;	second,	project	down	to	the	affine	
subspace	spanned	by	the	sphered	centroids.	This	can	all	be	
summarized	a	single	linear	transformation	𝐴 ∈ ℝ(7/!)×3

n Given	any	point	𝑥 ∈ ℝ3,	transform	to	 T𝑥 = 𝐴𝑥 ∈ ℝ7/!, and	
classify	according	to	the	class	𝑘 = 1,… , 𝐾 for	which

!
& | T𝑥 − T𝑢. |&& − log 𝜋.

is	smallest,	where	T𝑢. = 𝐴𝜇.
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The decision rule of LDA
This	way	of	describing	LDA	may	sound	more	complicated,	but
actually,	it’s	much	simpler!	After	applying	𝐴,	we’ve	reduced	the
problem	from	𝑝 to	𝐾 − 1 dimensions,	and	then	it’s	basically
nearest	centroid	classification:

(The	only	distinction	being	that	we	adjust	for	class	proportions)
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Example
Decision	boundaries,	using	the	formula	that	we	derived:
3	classes	with	8	features	to	a	2-dimensional	subspace
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Reduced-rank linear discriminant analysis

n The	dimension	reduction	from	p	to	𝐾 − 1 was	exact,	in	
that	we	didn’t	change	the	LDA	rule	at	all.	Why	might	we	
want	to	reduce	further	to	a	dimension	𝐿 < 𝐾 − 1,	if	𝐾 is	
large?
q Visualization
q Regularization

n Reduced-rank	linear	discriminant	analysis	is	a	nice	way	to	
project	down	to	lower	than	𝐾 − 1 dimensions.	It	chooses	
the	lower	dimensional	subspaces	so	as	to	spread	out	the	
centroids	as	much	as	possible
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The decision boundary (binary case)

Let	us	assume	that	 Then:

This	is	linear	projection	of	𝒙 onto	the	Σ/! (µ! − µ&) direction.

Where	did	we	see	this?
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The role of Σ!" in LDA

Why	does	LDA	use	projection	on	Σ/! (µ! − µ&) and	not	
simply	on	(µ! − µ&) ?
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Nearest centroid classifier

Under	additional	assumption	that	the	covariance	matrix	is	
spherical,	Σ = 𝜎&𝐈,	LDA	reduces	to	the	nearest	centroid	
classifier:
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Quadratic Discriminant Analysis (QDA)

QDA:		A	classifier	with	a	quadratic	decision	boundary,	the	
covariance	matrix,	is	not	identical.
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Logistic Regression versus LDA

For	a	two-class	problem,	one	can	show	that	for	LDA

So	it	has	the	same	form	as	logistic	regression.

The	difference	is	in	how	the	parameters	are	estimated.

l Logistic	regression	uses	the	conditional	likelihood	based	on	Pr(Y	|X)
(known	as	discriminative	learning).	

l LDA	uses	the	full	likelihood	based	on	Pr(X,	Y)	(known	as	generative	
learning).	

l Despite	these	differences,	in	practice	the	results	are	often	very	similar.
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LDA for classification

n When	the	classes	are	well-separated,	the	parameter	
estimates	for	the	logistic	regression	model	are	
surprisingly	unstable.	Linear	discriminant	analysis	does	
not	suffer	from	this	problem.

n If	𝑛 is	small	and	the	distribution	of	the	predictors	X	is	
approximately	normal	in	each	of	the	classes,	the	linear	
discriminant	model	is	again	more	stable	than	the	logistic	
regression.

n Linear	discriminant	analysis	is	popular	when	we	have	
more	than	two	classes,	because	it	also	provides	low-
dimensional	views	of	the	data.
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Multi-class 
Classification
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Multiclass Classification
n Multiclass	Classification	learning	methods

q Some	binary	classification	methods	can	be	directly	
extended	to	accommodate	multiclass	cases

q Apply	some	strategies	to	solve	multiclass	classification	
problems	with	any	existing	binary	classification	methods
（more	general）
n Decompose	the	problem	and	then	train	a	binary	

classifier	for	each	divided	binary	classification	problem
n Ensemble	the	outputs	collected	from	all	binary	

classifiers	into	the	final	multiclass	predictions
n Dividing	strategies

q One	vs.	One	(OvO)
q One	vs.	Rest	(OvR)
q Many	vs.	Many	(MvM)
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Multiclass Classification - OvO
n In	the	decomposing	phase	

q puts	the	𝑁 classes	into	pairs
n 𝑁(𝑁 − 1)/2 binary	classification	tasks

q trains	a	classifier	for	each	task
n 𝑁(𝑁 − 1)/2 classifiers

n In	the	testing	phase	
q a	new	sample	is	classified	by	all	classifiers

n 𝑁(𝑁 − 1)/2 classification	outputs

q the	final	prediction	can	be	made	via	voting
n the	predicted	class	is	the	one	received	the	most	votes
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Multiclass Classification - OvR
n In	the	decomposing	phase

q consider	each	class	as	positive	in	turn,	and	the	rest	
classes	are	considered	as	negative
n N binary	classification	tasks

q trains	a	classifier	for	each	task
n N classifiers

n In	the	testing	phase
q a	new	sample	is	classified	by	all	classifiers

n N classification	outputs
q the	prediction	confidences	are	usually	assessed

n the	class	with	the	highest	confidence	is	used	as	the	
classification	result
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Multiclass Classification – A comparison 
between OvO and OvR



Machine Learning Spring	Semester 51

OvO
n Train 𝑁(𝑁 − 1)/2 classifiers，

the	memory	and	testing	time	
costs	are	often	higher

n Each	classifier	uses	only	samples	
of	two	classes.	Hence,	the	
computational	cost	of	training	
OvO is	lower

OvR
n Train	𝑁 classifiers，the	

memory	and	testing	time	costs	
are	often	lower

n Each	classifier	uses	all	training	
samples.	Hence,	the	
computational	cost	of	training	
OvO is	higher

As	for	the	prediction	performance,	it	depends	on	the	specific	
data	distribution,	and	in	most	cases,	the	two	methods	have	

similar	performance.

Multiclass Classification – A comparison 
between OvO and OvR
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Recent Progress
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Class Imbalance Problem

• Deep Learning

• Real-world class-imbalanced (long-tailed) class distribution

Ø Faster computers

Ø Algorithmic improvements

Ø Access to

enablers

large amounts of data

Zipf's law

(Power law)
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Class Imbalance Problem

Challenge
—— model biased towards 
head classes

Decision boundary (ERM)

Take an example

Test distributionIdeal
Decision boundary
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Class Imbalance Problem
n Class	imbalance

q a	significantly	different	number	of	samples	for	each	class.（the	
positive	class	is	the	minority）

n Rescaling
q undersampling

n some	negative	samples	are	selectively	dropped	so	that	the	classes	
are	balanced (EasyEnsemble [Liu	et	al.,2009])

q oversampling
n increase	the	number	of	positive	samples		so	that	the	classes	are	

balanced	(SMOTE	[Chawla	et	al.2002])

q threshold-moving

the classes 
are balanced

the observed 
class ratio
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Class Imbalance Problem

Class
Re-balancing

Data
Augmentation

Class-balanced 
Loss Function
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Extreme Classification
Dataset # of Train Points # of Labels # of Test Points

Be
nc

hm
ar

k* LF-AmazonTitles-131K 294,805 131,073 134,835

LF-WikiSeeAlsoTitles-320K 693,082 312,330 177,515

LF-AmazonTitles-1.3M 2,248,619 1,305,265 970,237

Bi
ng

LF-P2PTitles-300K 1,366,429 300,000 585,602

LF-P2PTitles-2M 2,539,009 1,640,898 1,088,146
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Label Tree

• recursively partition	the	set	of	classes	into	subsets
• train	a	multi-class	(linear)	classifier	for	inference


