Lecture b
Linear Discriminant

Analysis
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Linear Discriminant Analysis [Fisher, 1936]

Given a training data set x4,...,x, € R4 consisting of two classes,
find a (unit-vector) direction that “best” discriminates between the

two classes.

LDA is a supervised
dimensionality reduction
method that tries to preserve
the discriminatory
information between classes.
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Linear Discriminant Analysis [Fisher, 1936]

First, observe that projections of the two classes onto
parallel lines always have “the same amount of separation”.
This time we are going to focus on lines that pass through
the origin.

Consider any unit vector w € R%, the 1D projections of the
points are .

T

ai =w xi,i = 1,...,7’l
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Linear Discriminant Analysis [Fisher, 1936]

Now the data look like this: One (naive) idea is to measure
the distance between the two
class means in the 1D projection
space: |u; — Uy |, where

,UlznilZaZ:nil WTXZ
x;€ X1 x;€ X,
= w’ 1 Z x; = wlimy
How do we quantify the M xex,
separation between the two and similarly,
classes (in order to compare .
different directions v and pr=w'my, my= ™ ;{ X;
xe X,

select the best one)?
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Linear Discriminant Analysis [Fisher, 1936]

That is, we solve the following problem

max [u1 — fio]
w:|[w(|=1

where . o

[ = mej, 7=1,2.

However, this criterion does not always
work (as shown in the right plot).

What else do we need to control?
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Linear Discriminant Analysis [Fisher, 1936]

[t turns out that we should also pay attention to the variances of the
projected classes:

3% = Z (a; —Ml)za 3% = Z (a; —Hz)z

x;€X, x;€Xo
Ideally, the projected classes have both faraway means and small variances.

This can be achieved through the following modified formulation:

2
(1 — po)
wiwll=1 52+ s2

The optimal w should be such that

*  (uy —uy)?: large
e s2,s%:both small
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Linear Discriminant Analysis [Fisher, 1936]

First, we derive a formula for the distance between the two projected

centroids:

(11— p2)” = (w'my — WTm2)2 = (w'(m; — m2))2

= WT(m1 — m2) . (m1 — m2)TW
— w!S,w
where

Sb = (m1 — mz)(ml — mz)T c RdXd

is called the between-class scatter matrix.

Remark. Clearly, §}, is square, symmetric and positive semidefinite.
Moreover, rank(S) = 1, which implies that it only has 1 positive eigenvalue!
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Linear Discriminant Analysis [Fisher, 1936]

Next, for each class j = 1,2, the variance of the projection (onto w) is

9
s? = Z (a; — ,uj)2 = Z (wai — mej)
XiEXj Xz'EXj

= Y wi(xi - my)(x; —my)'w

XiEXj

=w' | ) (xi—my)(x; —my)’ [w

where
S;= ) (xi —my)(x; —m;)" € R™

XiEXj

is called the within-class scatter matrix for class ;.
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Linear Discriminant Analysis [Fisher, 1936]

The total within-class scatter of the two classes in the projection space is
57 4 s5 = wlSw + W Sow = WT(51 + So)w = w'S, w

where

Sy =51 +8y = Z (x; — my)(x; —my)" + Z (x; — my)(x; — my)"

x;€X1 x; €Xo

is called the total within-class scatter matrix of the original data.

Remark. S,, € R%*? s also square, symmetric, and positive semidefinite.
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Linear Discriminant Analysis [Fisher, 1936]

Putting everything together, we have derived the following optimization
problem:

max w'Syw Generalized Rayleigh quotient
wiw|=1 wl'S,w (X 3mA )

Theorem. Suppose S,, is nonsingular. The maximizer of the problem is given
by the largest eigenvector w, of §;,'S}, i.e.,

S@_ulsbwl SV 4 R — S, w = \S,w

Remark. rank(S;,'S;) = rank(S},) = 1, so 1, is the only nonzero (positive)
eigenvalue that can be found. It represents the largest amount of separation
between the two classes along any single direction.
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Linear Discriminant Analysis [Fisher, 1936]

= Generalized Rayleigh quotient (J~ X ¥& 4] 7))

w!'S,w

J _
wlS, w
m Letw'S,w = I, maximizing generalized Rayleigh
quotient is equivalent to

min — w ' Syw
e

s.t. w'S,w =1
» Using the method of Lagrangian multipliers
Sb’w — )\Sww
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Linear Discriminant Analysis [Fisher, 1936]

Instead of solving a generalized eigenvalue problem, a smartest way is to
rewrite as

Aw = S (m; — my)(m; —my)'w

Sy

= S;l(ml — mz) . Sml — mz)T“f

scalar

This implies that

W X S;Ul(ml — mg)
and it can be computed from w o S,'(m; — m») through rescaling!

Remark. Here, inverting S,, can be done through singular value
decomposition §, = UXV7T
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‘ Singular Value Decomposition

Singular Value Decomposition (% F#1H 77 i, SVD)

Any real matrix A € R™*™ can be decomposed as

A=UxV!

U € R™*™ is a unitary matrix of order m satisfying UTU = 1,

V € R™*™ is a unitary matrix of order n satisfying VIV = 1,

Y € R™mX7" ijg a m x n matrix with all of its elements take the

value 0 except (X);; = o0;, where o; are non-negative real numbers

andaq =09 >... =4,
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Singular Value Decomposition

Applications of SVD, e.g., low-rank matrix approximation

to approximate a r-rank matrix A with a k-rank matrix ;‘:, where l%_g r,

“min ||JA-A|p
AERvn Xn

~

s.t. rank(A) = k.

SVD can provide an analytical solution:
* Performing SVD on A;

obtain a matrix 3, by setting the » — k smallest singular values
in X to zero, (i.e., keep only the k largest singular values)
* the optimal solution: A;, = U, X, V|,
U and V. are, respectively, the first £ columns of U and V

Machine Learning Spring Semester 14



Linear Discriminant Analysis

The idea of LDA: project the same class samples onto a line,
while samples of different classes are far away from each other.

a0 To make the projection of similar samples as close as possible, we can
make the covariance of the projection points of similar samples as
small as possible

o To make the projection of samples from different classes as far away
as possible, we can make the distance between the class centers as
large as possible
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Extend LLDA to multiclass

The global scatter matrix:

S =" (x—my)(x—my)’, S, =3 n,(m; - m)(m, — m)”

j=1 x€X; j=1
We have arrived at the same kind of problem:

WTSbW

Imax T
wi|wl=1 w* S, W

The solution is given by the largest eigenvector of $;,'S}, (S}, is nonsingular):
S;lsbwl = )\1W1

However, the formula W « S,'(m1 —m2) jgno longer valid:

Awy =S 'Syw; =S * Z n;j(m; — m)(m; — m)’ w;
; N v

~”

scalar

16
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Extend LLDA to multiclass

The solution is given by the largest eigenvector of S;,1S;, (S, is nonsingular):
S;lsbwl = )\1W1

However, the formula W o« S,'(mi —mz) jgno longer valid:

\

Mw =S 'S;w; =S * an(mj —m)(m; — m)’ w;
j ~ v

scalar
So we have to find w; by solving a generalized eigenvalue problem:

Sb’w — )\Sww
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‘ Extend ILDA to multiclass

0% ¢ o ©

Mo y A
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‘ Extend ILDA to multiclass

What about the second eigenvector w,?
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Extend LLDA to multiclass

How many discriminatory directions can we find?

To answer this question, we just need to count the number of nonzero eigenvalues
-1 .
S, Syw = \w
since only the nonzero eigenvectors will be used as the discriminatory directions.

In the above equation, the within-class scatter matrix S, is assumed to be
nonsingular. However, the between-class scatter matrix §}, is of low rank:

Sy = an(mz —m)(m; — m)T

= [vni(m; —m)---y/n.(m. —m)]-
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Extend LLDA to multiclass

Observe that the columns of the matrix

[vni(my —m)---y/n.(m; —m)

are linearly dependent:

VL - /i(my —m) + - + /g - y/f(m, — m)
— (n1m1_|_...ncmc)_(n1_|_..._|_nc)m
= nm — nim
= 0.

The shows that rank(S},) < ¢ — 1 (where c is the number of training classes).

Therefore, one can only find at most ¢ — 1 discriminatory directions.

Machine Learning Spring Semester
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‘ Extend LDA to multiclass

= Objective _tr (WIS, W) n
W wrs,w)  |r(A) =22, A

where W ¢ R&x(N-1 ‘ .a(; tr (XTBX)

S, W = AS, W

(B+BhH)X

Concatenating the eigenvectors corresponding to the d’ largest
non-zero eigenvalues of S 'S, leads to the closed-form
solution of W, whered' <c—1
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LLDA for classification

m Explain from the aspect of Bayesian decision
theory
o It can be proved that we have the optimal
solution of LDA when both classes follow
Gaussian distribution with the same prior and
covariance

Machine Learning Spring Semester
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Bayes Theorem for Classification

Thomas Bayes was a famous mathematician whose name
represents a big subfield of statistical and probabilistic
modeling. Here we focus on a simple result, known as
Bayes theorem:

br(Y = KX = g =PI =alY = 1) - Pr(¥ = b

Pr(X = x)
One writes this slightly differently for discriminant analysis:
T Sk (2)
Pr(Y = k| X = z) = , h
r( | z) Z{il fi(z) where

fi(x) =Pr(X =x | Y = k) is the density for X in class k.
Here we will use normal densities for these, separately in
each class.

n;, = Pr(Y = k) is the marginal or prior probability for class k.

Machine Learning Spring Semester

24



Classify to the highest density

m=.5, my=.5 m=.3, Ty=.7

1
[ I | [ I [ I I I I

-4 =2 0 2 4 -4 =2 0 2 4

* We classify a new point according to which density is highest

* When the priors are different, we take them into account as
well, and compare 1, fi(x). On the right, we favor the pink
class — the decision boundary has shifted to the left.
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Linear Discriminant Analysis (p = 1)

The Gaussian density has the form

Here i, is the mean, and o the variance (in class k). We
will assume that all the o, = o are the same.

Plugging this into Bayes formula, we get a rather complex
expression for p,(x) = Pr(Y = k1 X = x):

1 _1(m)
_ 2 o
Tk 27r(7e

Happily, there are simplifications and cancellations.
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Discriminant functions

To classify at the value X = x, we need to see which of the
p,(x) is largest. Taking logs, and discarding terms that do not
depend on k, we see that this is equivalent to assigning x to
the class with the largest discriminant score:

2
. K M
519(56) =& o2 - 252 + log(ﬂ-k‘)

Note that 6, (x) is a linear function of x.

If there are K = 2 classesand m; = m, = 0.5, then one can
see that the decision boundary is at

o — 1+ U2
y
(See if you can show this)
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‘ Discriminant functions

| | T | | T T I T T T |
-4 -2 0 2 4 -3 -2 -1 0 1 2 3 4
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‘ Discriminant functions

| |
2 4

e Example with p; = —=1.5,u, = 1.5,m; = m, = 0.5,and 6% = 1

» Typically we don’t know these parameters; we just have the
training data. In that case we simply estimate the parameters
and plug them into the rule.
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Estimating the parameters

x ng
T = —
n
. 1
E= z;
i o Z i
i Y=
A2
(0} =
— KY 7
k=11 y;=
K
~K
k=1
A 1 "N
where 67 = —— ¥i.y,=k(x; — fix)? is the usual formula for

nie—1
the estimated variance in the k-th class.
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Linear Discriminant Analysts (p > 1)

Pr(Y = k|X = z) = Qkf’“(‘”) ,
>_i=1 Tfi()
1 1 Ts—1
itv: = —5(@—p)" 7 (z—p)
Density: f(x) (27r)P/2|2|1/2e 2
1
Discriminant function: & (z) = 27 Xy — §u£2—1uk + log g,
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The decision rule of LDA

~LDA
() = argmax 6 ()
k=1,.. K

where 6, (x) is the estimated discriminant function of class k,

_ 1 _
Ox(x) = 'S, — §M£2 'uk + log m,

Despite its complex form,

k() = cko + cr121 + Ck2x2 + .. . + ckpxp — a linear function.
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LDA computations and sphering

Note that LDA equivalently minimizes over k = 1, ..., K

1 _
E(w - Mk)TE Hz — py) — logmy

It helps to factorize X (i.e., compute its eigendecomposition):

> =UDU"
where U € RP*P has orthonormal columns (and rows), and
D = diag(d,,...d,) with d; = 0 for each j. Then we have 271 =
UD~1UT, and

(€ — ) (@ — ) = |ID°U g - D_1/2UT.U13||§

\ .

~ Vs
:C -~
125%

This is just the squared distance between X and i

Machine Learning Spring Semester
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LLDA procedure summarized
Compute the sample estimates my, ty, X
Factor %,asinX = UDUT
Transform the class centroids @i, = D~20T

Given any point x € R?, transform to ¥ = D~Y/2UTx € RP,
and then classify according to the nearest centroid in the
transformed space, adjusting for class proportions—this is

N U :
the class k for which > ||% — 1ig||5 — log my, is smallest

What is this transformation doing?
¥=D"12UTx, i = 1,..,n

This is basically sphering the data points, because if we think of
x € RP were a random variable with covariance matrix ¥, then

Cov (D_l/zUTa:) — D V2yTsyp12 =
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Linear subspace spanned by sphered centroids

o1~ o~
LDA compares the quantity > ||% — 1ix||5 — log my, across the

classes k = 1, ..., K. Consider the affine subspace M € R?
spanned by the transformed centroids iy, ..., tig, which has

dimension K — 1 N
Forany X € RP, we can decompose

X = PyX + Py1X, so

~ ~ 112 ~ ~ ~
2 — Bl = 1w — iy + Py
N ~~ AR
eM eMt
~ ~ 12 ~ 12
= 1 PrZ — iy ll2 + [ Par- 2l
The second term doesn’t depend on k

What this is telling us: the LDA classification rule is
unchanged if we project the points to be classified onto M,
since the distances orthogonal to M don’t matter

Machine Learning Spring Semester 35



LLDA procedure summarized

Compute the sample estimates my, U, =

Make two transformations: first, sphere the data points,
based on factoring X; second, project down to the affine
subspace spanned by the sphered centroids. This can all be

summarized a single linear transformation A € RE-1)xp

Given any point x € R?, transform to ¥ = Ax € RX™1, and
classify according to the class k = 1, ..., K for which

1L
~|1% — T || — log my,

is smallest, where @i, = Auy,
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The decision rule of LDA

This way of describing LDA may sound more complicated, but
actually, it’s much simpler! After applying A, we've reduced the
problem from p to K — 1 dimensions, and then it’s basically
nearest centroid classification:

~LDA s
(z) = argmax|[z — /|2 — log
k=1,...K

(The only distinction being that we adjust for class proportions)

Machine Learning Spring Semester
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‘ Example

Decision boundaries, using the formula that we derived:

3 classes with 8 features to a 2-dimensional subspace

N N
© ©
o _| o _|
© ©
o _| o _]
w0 Yo}
AN AN
a a
| |
© _| © _]
Te] Te]
3 3
O Region 1 O Region 1
O Region 2 © Region 2
S o Region 3 B o Region 3 o
| | | | | | | | |
-18 -16 -14 -12 -10 -8 -18 -16 -14 -12 -10 -8
LD1 LD1
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Reduced-rank linear discriminant analysis

The dimension reduction from p to K — 1 was exact, in
that we didn’t change the LDA rule at all. Why might we
want to reduce further to a dimension L < K — 1,ifK is
large?

o Visualization

o Regularization

Reduced-rank linear discriminant analysis is a nice way to
project down to lower than K — 1 dimensions. It chooses
the lower dimensional subspaces so as to spread out the
centroids as much as possible
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‘The decision boundary (binary case)

Let usassume that ¥ = 3, = 3. Then:

(x— 1) "B (x —py) = (x— o) ' BT (x — o)
2x ' ST (g — pg) = BTy — 1y By

"~
const

x' 27 (g — py) = const

This is linear projection of x onto the ™1 (u; — p,) direction.

Where did we see this?
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The role of £~ 1 in LDA

Why does LDA use projection on ™! (u; — p,) and not
simply on (p; — W) ?

Machine Learning Spring Semester
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‘ Nearest centroid classifier

Under additional assumption that the covariance matrix is
spherical, £ = oI, LDA reduces to the nearest centroid
classifier:

\ -
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Quadratic Discriminant Analysis (QDA)

QDA: A classifier with a quadratic decision boundary, the
covariance matrix, is not identical.

_ 1 _
Or(x) = fBTEklﬂk — Eﬂgzklﬂk + log 7y,
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Logistic Regression versus LDA

For a two-class problem, one can show that for LDA

log (1 flz()f()$)) = log (ggg) =co+ 121 + . .. + Cpy

So it has the same form as logistic regression.

The difference is in how the parameters are estimated.

Logistic regression uses the conditional likelihood based on Pr(Y |X)
(known as discriminative learning).

LDA uses the full likelihood based on Pr(X, Y) (known as generative
learning).

Despite these differences, in practice the results are often very similar.
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LLDA for classification

When the classes are well-separated, the parameter
estimates for the logistic regression model are
surprisingly unstable. Linear discriminant analysis does
not suffer from this problem.

Ifn is small and the distribution of the predictors X is
approximately normal in each of the classes, the linear
discriminant model is again more stable than the logistic
regression.

Linear discriminant analysis is popular when we have
more than two classes, because it also provides low-
dimensional views of the data.
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Multi-class
Classification
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Multiclass Classification

Multiclass Classification learning methods

0 Some binary classification methods can be directly
extended to accommodate multiclass cases

0 Appl?r some strategies to solve multiclass classification
problems with any existing binary classification methods
(more general)

Decompose the problem and then train a binary
classifier for each divided binary classification problem

Ensemble the outputs collected from all binary
classifiers into the final multiclass predictions

Dividing strategies

o One vs. One (OvO)

a0 One vs. Rest (OvR)

o Many vs. Many (MvM)

Machine Learning Spring Semester
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Multiclass Classification - OvO

In the decomposing phase

o puts the N classes into pairs
N(N — 1)/2 binary classification tasks

0 trains a classifier for each task
N(N — 1)/2 classifiers

In the testing phase

0 a new sample is classified by all classifiers
N(N — 1)/2 classification outputs

0 the final prediction can be made via voting

the predicted class is the one received the most votes
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Multiclass Classification - OvR

In the decomposing phase

o consider each class as positive in turn, and the rest
classes are considered as negative

N binary classification tasks

0 trains a classifier for each task
N classifiers

In the testing phase

0 a new sample is classified by all classifiers
N classification outputs

0 the prediction confidences are usually assessed

the class with the highest confidence is used as the
classification result
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Multiclass Classification — A comparison
between OvO and OvR

Samples of class Cy

 —
Data set C,
OvO / NOVR
Training samples Training samples
et «_»  Classifiers Predictions ” «“_» Classifiers Predictions
( ¢ & ):>f1—>C1- ( Cy Cy C3 Cy ):>f1—>“—”'
Final
( C || G ) = f, — C; ( o || acea ):» fy — <« | prediction
Final N C3
( q Cy ) = f3 — C; | prediction ( C3 C; Cy Cy ) = fy —> 47
S— C3
( o || e ):>f4—>C3 ( a1l e ):,f‘}_,“_,,
( CZ C4 ) = f5 —> CZ
( C3 Cy ) = fo — C3
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Multiclass Classification — A comparison
between OvO and OvR

OvO OvR
Train N(N — 1)/2 classifiers, Train N classifiers, the
the memory and testing time memory and testing time costs
costs are often higher are often lower
Each classifier uses only samples Each classifier uses all training
of two classes. Hence, the samples. Hence, the
computational cost of training computational cost of training
OvO is lower OvO is higher

As for the prediction performance, it depends on the specific
data distribution, and in most cases, the two methods have
similar performance.
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Recent Progress
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‘ Class Imbalance Problem

Deep Learning
| » Faster computers
enablers > Algorithmic improvements

> Access to large amounts of data

Real-world class-imbalanced (long-tailed) class distribution

iq‘f\ﬂ)
hiaey
- om TAf!
§|o1 N ag Z[ S laW =
H WIKIPEDIA P f E
z 2
(Power law) g tend e ‘
Tail T
Class index

3
Label indices
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‘ Class Imbalance Problem

Challenge

—— model biased towards
head classes

~
>

Decision
boundary

Number of training samples

Tail

Sorted class index

v

Take an example

Decision boundary (ERM)

~ ~
e \
/ \
SO \
!
! D ’ ’E A
\ D A ] \
\ / \
B/
~ ~ - e aE /l
|deal Test distribution

Decision boundary

Machine Learning
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‘ Class Imbalance Problem

= Class imbalance

o a significantly different number of samples for each class. (the
positive class is the minority)

the classes | ¥ m™* the observed
are balanced 1—y 1—y m— class ratio

N Ref :':erndpal;r;:e:lebalancing . ) A e \ g V Imbalanced Data
J
5SES
Under-sampling Over-sampling
a
. .
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‘ Class Imbalance Problem

Class Data
Re-balancing Augmentation
/,/—-~\\ ,,——s\\
\ /
an \ 28 B B
' ; ' i
| v TH B | N
OO0t Ot
\ / \ /

Class-balanced
Loss Function
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Extreme Classification

Dataset # of Train Points # of Labels # of Test Points

LF-AmazonTitles-131K 294,805 131,073 134,835

LF-WikiSeeAlsoTitles-320K 693,082 312,330 177,515

Benchmark*

LF-AmazonTitles-1.3M 2,248,619 1,305,265 970,237

LF-P2PTitles-300K 1,366,429 300,000 585,602

Bing

LF-P2PTitles-2M 2,539,009 1,640,898 1,088,146

AmazonTitles-300K WikiSeeAlsoTitles-350K

(Log scale)

(Log scale)
(=]
=

Number of Training Points
Number of Training Points

0 100000 200000 300000
Label ID Label ID

0 100000 200000 300000
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‘ Label Tree

Branching factor: K =3

Linear separators Root node
trained inside root node node 1abe1§ S ={1,..., L} . ¢ Non-leaf node
A label partitions S,, Sy, S.
: " Leaf node
Ao linear separators wq, Wy, We
mv\ A
N w
C
n/ T~
¢ ® o Child a ' Child b ‘ Child c ‘
o node labels S, node labels Sy node labels S,

@ Label for Child a
B Label for Child b
A\ Label for Child ¢

* recursively partition the set of classes into subsets
 train a multi-class (linear) classifier for inference
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