
Machine Learning Spring	Semester 1

Lecture 6

Support Vector

Machines



Machine Learning Spring	Semester 2

Outline

n Margin	and	Support	Vector

n Dual	Problem

n Soft	Margin	and	Regularization

n Kernel	Function

n Support	Vector	Regression

n Kernel	Methods
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Support Vector Machine

n Vladimir	Vapnik
q Born	in	the	Soviet	Union

n PhD	in	statistics,	1964
n Co-invented	the	VC	dimension

q Vapnik-Chervonenkis Theory,	1974

q Moved	to	the	U.S.	in	1990
n Jointed	AT&T
n Developed	SVM	algorithm	in	the	90’s

Vladimir	N.	Vapnik
1936-Present
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Introduction
Linear	model：find	a	separating	hyperplane	in	the	sample	space	that	can	
separate	samples	of	different	classes.

0
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Introduction

-Q:	There	could	be	multiple	qualified	separating	hyperplanes,	which	one	
should	be	chosen?

0
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Introduction
-Q:	There	could	be	multiple	qualified	separating	hyperplanes,	which	one	
should	be	chosen?

-A:	The	one	right	in	the	middle	of	two	classes.	It	has	the	best	tolerance	to	local	
data	perturbation,	the	strongest	generalization	ability	and	the	most	robust	
classification	results.

0
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Margin and Support Vector

Margin

0

Support 
Vectors

Good	according	to	intuition,	theory,	practice.

Robust	to
outliers!

SVMs	(Vapnik,	1990’s)	choose	the	linear	separator	with	the
largest	margin.

SVM	became	famous	when,	using	images	as	input,	it	gave	accuracy	
comparable	to	neural-network	with	hand-designed	features	in	a	
handwriting	recognition	task



Machine Learning Spring	Semester 8

Decision Boundary - SVM

𝝎

𝒙

𝝎 ⋅ 𝒙 ≥ 𝒄

𝝎 ⋅ 𝒙 + 𝒃 ≥ 0, then	class	+

𝒄 = −𝒃

Decision	Rule



Machine Learning Spring	Semester 9

Decision Boundary - SVM

𝝎

𝒙

𝝎 ⋅ 𝒙 ≥ 𝒄

𝝎 ⋅ 𝒙 + 𝒃 ≥ 0, then	class	+

𝒄 = −𝒃

𝝎 ⋅ 𝒙! + 𝒃 ≥ 1, then	class	+
𝝎 ⋅ 𝒙" + 𝒃 ≤ −1, then	class	-

𝑦# such	that:	𝑦# = +1 for	class	+
𝑦# = −1 for	class	-
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Decision Boundary - SVM

𝝎

𝒙

𝝎 ⋅ 𝒙! + 𝒃 ≥ 1, then	class	+
𝝎 ⋅ 𝒙" + 𝒃 ≤ −1, then	class	-

𝑦# such	that:	𝑦# = +1 for	class	+
𝑦# = −1 for	class	-

𝑦#(𝝎 ⋅ 𝒙# + 𝒃) ≥ 1, for	class	+
𝑦#(𝝎 ⋅ 𝒙# + 𝒃) ≥ 1, for	class	-
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Decision Boundary - SVM

𝝎

𝒙

𝝎 ⋅ 𝒙! + 𝒃 ≥ 1, then	class	+
𝝎 ⋅ 𝒙" + 𝒃 ≤ −1, then	class	-

𝑦# such	that:	𝑦# = +1 for	class	+
𝑦# = −1 for	class	-

𝑦#(𝝎 ⋅ 𝒙# + 𝒃) ≥ 1, for	class	+
𝑦#(𝝎 ⋅ 𝒙# + 𝒃) ≥ 1, for	class	-

𝑦# 𝝎 ⋅ 𝒙# + 𝒃 − 1 ≥ 0,
𝑦# 𝝎 ⋅ 𝒙# + 𝒃 − 1 = 0,	for	boundary	cases
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Decision Boundary - SVM

𝒙!

𝒙"
𝒙! − 𝒙"

W𝑖𝑑𝑡ℎ = 𝒙! − 𝒙" ⋅
𝝎
𝝎

1 − 𝒃 1 + 𝒃

=
2
𝝎

max $
𝝎

⇔max &
𝝎

⇔m𝑖𝑛 𝝎 ⇔ m𝑖𝑛 &
$
𝝎 $

𝑦# 𝝎 ⋅ 𝒙# + 𝒃 − 1 = 0,	for	support	vectors



Machine Learning Spring	Semester 13

Support Vector Machines: 3 key ideas

n Use	optimization to	find	solution	(i.e.	a	
hyperplane)	with	few	errors

n Seek	large	margin	separator	to	improve	
generalization

n Use	kernel	trick	to	make	large	feature	spaces	
computationally	efficient
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The Primal Form of SVM
Maximum	margin:	finding	the	parameters					and				that	
maximize

This	is	an	optimization	problem	with	linear,	inequality	constraints.
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Review of multivariable calculus

Consider	the	following	constrained	optimization	problem

There	are	two	cases	regarding	where	the	global	minimum	of	
f(x)	is	attained:

(1)	At	an	interior	point	𝑥∗ (𝑖. 𝑒. , 𝑔(𝑥∗) > 𝑏).	In	this	case	𝑥∗ is	
just	a	critical	point	of	𝑓(𝑥).
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The Lagrange Method
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The Lagrange Method
(2)	At	a	boundary	point	𝑥∗ (i.e.,	𝑔(𝑥∗) = 𝑏).	In	this	case,	
there	exists	a	constant	𝜆 > 0 such	that	∇𝑓(𝑥∗) = 𝜆 · ∇𝑔(𝑥∗).

Why?
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The Lagrange Method
The	above	two	cases	are	unified	by	the	method	of	
Lagrange	multipliers:
• Form	the	Lagrange	function

• Find	all	critical	points	by	solving

Remark.	The	solutions	give	all	candidate	points	for	the	global	minimizer	
(one	needs	to	compare	them	and	pick	the	best	one).
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The Lagrange Method

Remarks:

•	The	above	equations	are	called	Karush-Kuhn-Tucker	(KKT)	
conditions.

•	When	there	are	multiple	inequality	constraints

the	method	works	very	similarly:
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The Lagrange Method

– Form	the	Lagrange	function

– Find	all	critical	points	by	solving

and	compare	them	to	pick	the	best	one.
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The Lagrange Method

Consider	a	general	optimization	problem	(called	as	primal	problem)

We	define	its	Lagrangian as

Lagrangian	multipliers	𝜆 ∈ ℝ!, 𝑢 ∈ ℝ".
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The Lagrange Method

Lemma 1 At each feasible 𝑥, 𝑓 𝑥 = sup
#$%, '

𝐿(𝑥, 𝜆, 𝑢), and the supremum is 

taken iff 𝜆 ≥ 0 satisfying 𝜆(𝑔( 𝑥 = 0, 𝑖 = 1,… , 𝑘.

Proof: At	each	feasible	𝑥,	we	have	𝑔( 𝑥 ≥ 0 and	ℎ 𝑥 = 0,	thus	
𝐿 𝑥, 𝜆, 𝑢 = 𝑓 𝑥 − ∑()*! 𝜆(𝑔( 𝑥 + ∑+)*" 𝑢+ℎ+ 𝑥 ≤ 𝑓 𝑥 .

Proposition 2 The optimal value of primal problem, named as 𝑓∗, satisfies: 
𝑓∗ = inf

-
sup
#$%, '

𝐿(𝑥 , 𝜆, 𝑢)

Proof: First	considering	feasible	𝑥 (marked	as	𝑥 ∈ 𝐶),	we	have	
𝑓∗ = inf

-∈/
𝑓 𝑥 = inf

-
sup
#$%, '

𝐿(𝑥 , 𝜆, 𝑢). Second	considering	non-feasible	𝑥,	

since	 sup
#$%, '

𝐿 𝑥, 𝜆, 𝑢 =∝ for	any	𝑥 ∉ 𝐶,	 inf
-∉/

sup
#$%, '

𝐿(𝑥 , 𝜆, 𝑢) =∝.	In	total,	

𝑓∗ = inf
-

sup
#$%, '

𝐿(𝑥 , 𝜆, 𝑢).
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The Dual Problem
A	re-written	Primal	Problem	:	

min
-
max
#$%,'

𝐿(𝑥, 𝜆, 𝑢)

The	Dual	Problem:	

max
#$%,'

min
-
𝐿(𝑥, 𝜆, 𝑢)

Theorem	(weak duality):

𝑑∗ = max
#$%,'

min
-
𝐿(𝑥, 𝜆, 𝑢) ≤ min

-
max
#$%,'

𝐿(𝑥, 𝜆, 𝑢) = 𝑝∗

Theorem	(strong duality,	e.g.,	Slater’s	condition):
If	the	primal	is	a	convex	problem,	and	there	exists at least	one	strictly	
feasible	 F𝑥,meaning	that		∃)𝑥, 𝑔! )𝑥 > 0, 𝑖 = 1, … , 𝑘, ℎ" )𝑥 = 0, 𝑗 = 1, … ,𝑚.

𝑑∗ = 𝑝∗

Although	the	primal	
problem	is	not	required	to	
be	convex,	the	dual	
problem	is	always	convex.
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Karush–Kuhn–Tucker (KKT) conditions
Necessary	conditions
If	𝑥∗ and	𝜆∗, 𝑢∗ are	the	primal	and	dual	solutions	respectively	with	zero	
duality	gap,	we	will	show	that	𝑥∗, 𝜆∗, 𝑢∗ satisfy	the	KKT	conditions.	

equality: 𝑥∗ minimizes	L(𝑥, 𝜆∗, 𝑢∗)	

equality: 𝜆!∗ 𝑔! 𝑥∗ = 0

complementary	slackness

stationarity

For	convex	problems	with	strong	duality	(e.g.,	when	Slater's	condition	is	satisfied),	
the	KKT	conditions	are	necessary	and	sufficient	optimality	conditions,	i.e.,	𝑥∗
and	(𝜆∗, 𝑢∗)	are	primal	and	dual	optimal	if	and	only	if	the	KKT	conditions	hold.



Machine Learning Spring	Semester 25

Outline

n Margin	and	Support	Vector

n Dual	Problem

n Soft	Margin	and	Regularization

n Kernel	Function

n Support	Vector	Regression

n Kernel	Methods
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The Primal Form of SVM
Maximum	margin:	finding	the	parameters					and				that	
maximize

This	is	an	optimization	problem	with	linear,	inequality	constraints.
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Dual problem
n Lagrange	multipliers

q Step-1：introducing	a	Lagrange	multiplier														,	gives	the	
Lagrange	function

q Step-2：Setting	the	partial	derivatives	of with	respect	
to and to	0 gives

q Step-3：Substituting	back
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Sparsity of the solution

n desired	model：

n KKT conditions：

Sparsity of	the	solution	of	SVM:	once	the	training	
completed,	most	training	samples	are	no	longer	needed	
since	the	final	model	only	depends	on	the	support	vectors.

primal	constraints

dual	constraints

complementary	slackness

stationarity
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Solving QP problem- Coordinate Ascent
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Solving QP problem- SMO
n Basic	idea：repeats	the	following	two	steps	until	

convergence.
q Step1：Select	two	variables	to	be	updated:								and
q Step2：Fix	all	the	parameters	and	solve	dual	problem	to	update								and

n If	we	only	consider						and						,	then	we	can	rewrite	the	
constraints	in	dual	problem	as

n Bias	term ：determined	by	support	vectors

Eliminate	the	variable	with	another	and	substitute	back	to	the	dual	
problem	leads	to	a	univariate	quadratic	programming	problem,	which	has	
closed-form	solutions.	We	"clip"	the	value	of	𝛼 to	respect	the	constraints.

blocked coordinate descent
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Solving QP problem- SMO
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Support vectors
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The Lagrange dual problem
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Outline

n Margin	and	Support	Vector

n Dual	Problem

n Soft	Margin	and	Regularization

n Kernel	Function

n Support	Vector	Regression

n Kernel	Methods
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What is the optimal separating line?

(Both	data	sets	are	much	better	linearly	separated	if	several	points	are	ignored).
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Key idea #2: the slack variables
-Q:	It	is	often	difficult	to	find	an	appropriate	kernel	function	
to	make	the	training	samples	linearly	separable	in	the	
feature	space.	Even	if	we	do	find	such	a	kernel	function,	it	is	
hard	to	tell	if	it	is	a	result	of	overfitting.
-A:		Allow	a	support	vector	machine	to	make	mistakes	on	a	
few	samples:	soft	margin.

0

Instances	violating	the	
constraint
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Key idea #2: the slack variables

To	find	a	linear	boundary	with	a	large	margin,	we	must	
allow	violations	of	the	constraint	𝑦#(𝒘 · 𝒙# + 𝑏) ≥ 1.

That	is,	we	allow	a	few	points	to	fall	within	the	margin.	They	
will	satisfy

𝑦#(𝒘 · 𝒙# + 𝑏) < 1

There	are	two	cases:
•	𝑦# = +1: 𝒘 · 𝒙# + 𝑏 < 1;	
•	𝑦# = −1: 𝒘 · 𝒙# + 𝑏 > −1.
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Key idea #2: the slack variables

Formally,	we	introduce	slack	variables 𝜉&, . . . , 𝜉C ≥ 0 (one	for	
each	sample)	to	allow	for	exceptions:

𝑦#(𝒘 · 𝒙# + 𝑏) ≥ 1 − 𝜉#, ∀𝑖

where	𝜉# = 0 for	the	points	in	ideal	locations,	and	𝜉# > 0 for	the	
violations	(chosen	precisely	so	that	the	equality	will	hold	true):	

•	0	<	𝜉# <	1:	Still	on	correct	side	of	hyperplane	but	within	the	
margin	

•	𝜉# >	1:	Already	on	wrong	side	of	hyperplane	

We	say	that	such	an	SVM	has	a	soft	margin to	distinguish	from	
the	previous	hard	margin.
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Key idea #2: the slack variables
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Introducing Slack Variables

Because	we	want	most	of	the	points	to	be	in	ideal	locations,	we	
incorporate	the	slack	variables	into	the	objective	function	as	follows

where	𝐶 > 0 is	a	regularization	constant:	
•	Larger	𝐶 leads	to	fewer	exceptions	(smaller	margin,	possible	

overfitting).	
•	Smaller	𝐶 tolerates	more	exceptions	(larger	margin,	possible	

underfitting).	
Clearly,	there	must	be	a	tradeoff	between	margin	and	#exceptions	when	
selecting	the	optimal	𝐶 (often	based	on	cross	validation).



Machine Learning Spring	Semester 41

ℓ! relaxation of the penalty term
The	discrete	nature	of	the	penalty	term	on	previous	slide,	∑( 12!3% =

||𝜉||%,	makes	the	problem	intractable.	

A	common	strategy	is	to	replace	the	ℓ% penalty	with	a	ℓ* penalty:	
∑( 𝜉( = ||𝜉||*,	resulting	in	the	following	full	problem

Remarks:	
(1)	Also	a	quadratic	program	with	linear	ineq.	constraints	(just	more	
variables):	𝑦((𝒘 · 𝒙( + 𝑏) + 𝜉( ≥ 1.
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The Lagrange dual problem

The	associated	Lagrange	function	is

To	find	the	dual	problem	we	need	to	fix	𝜆,	�⃗� and	maximize	
over	𝒘, 𝑏, 𝜉:
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The Lagrange dual problem
This	yields	the	Lagrange	dual	function

The	dual	problem	would	be	to	maximize	𝐿∗ over	𝜆, �⃗� subject	to	the	
constraints.	
Since	𝐿∗ is	constant	with	respect	to	the	𝜇(,	we	can	eliminate	them	to	
obtain	a	reduced	dual	problem:

What 
changed? 
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What about the KKT conditions?

The	KKT	conditions	are	the	following

We	see	that	
•	The	optimal	w has	the	same	formula:	𝒘 = ∑𝜆#𝑦#𝒙#.	
•	Any	point	with	𝜆# > 0 and	correspondingly	𝑦#(𝒘 · 𝒙 +
𝑏) = 1 − 𝜉# is	a	support	vector	(not	just	those	on	the	margin	
boundary	𝒘 · 𝒙 + 𝑏 = ±1).
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To find b

To	find	𝑏,	choose	any	support	vector	𝒙( with	0 < 𝜆( < 𝐶 (which	implies	
that	𝜇( > 0 and	𝜉( = 0),	and	use	the	formula	𝑏 = *

4!
−𝒘 · 𝒙(.
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ℓ! relaxation of the penalty term

The	problem	may	be	rewritten	as	an	unconstrained	
optimization	problem

sub-gradient descent
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Hinge loss vs. 0/1 loss

Hinge	loss	upper	bounds	0/1	loss!

It	is	the	tightest	convex	upper	bound	on	the	0/1	loss
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Surrogate loss functions

0 1 2-1-2

1

2

3

Surrogate	loss	functions	have	nice	mathematical	properties,	e.g.,	convex,	
continuous,	and	are	upper	bound	of	0/1	loss	function

Soft	margin	SVM
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Regularization
n General	form	of	SVM	models:

n Other	learning	models	can	be	derived	by	substituting	the	
above	components
q Logistic	Regression
q LASSO
q ……

Structural	risk,	representing	
some	properties	of	the	model

Empirical	risk,	describing	how	well	the	
model	matches	the	training	data
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Outline

n Margin	and	Support	Vector

n Dual	Problem

n Soft	Margin	and	Regularization

n Kernel	Function

n Support	Vector	Regression

n Kernel	Methods
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What if the data is not linearly
separable?

Use	features	of	features
of	features	of	features….
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Use Feature Map

Feature	space	can	get	really	large	really	quickly!
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Key idea #3: the kernel trick
n High	dimensional	feature	spaces	at	no	extra	cost!
n Map	the	samples	from	the	original	feature	space	to	a
higher	dimensional	feature	space.	That	way	the	samples	
become	linearly	separable.
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Kernel SVM
Let										denote	the	mapped	feature	vector	of						,	the	separating																																																							
hyperplane																																			can	be	expressed	as

Original	
Problem

Dual	
Problem

Prediction
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Kernel function
n Basic	idea：design	kernel	function	instead	of	kernel	

mapping	explicitly

n Mercer’s theorem	(sufficient,	nonessential)：if	only	the	
corresponding	kernel	matrix	of	a	symmetric function	is	
positive-definite,	it	can	act	as	a	kernel	function.	
(analogous	to	the	definition	of	a	positive-semidefinite	
matrix)

n Common	kernel	functions：
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What are good kernel functions?

n Linear	kernel
q 𝐾 𝒙U , 𝒙V = 𝜙 𝒙U 𝜙 𝒙V = 𝒙U ⋅ 𝒙V

n Polynomial
q 𝐾 𝒙U , 𝒙V = 𝒙U ⋅ 𝒙V + 1

W

n Gaussian	(also	called	Radial	Basis	Function,	or	RBF)

q 𝐾 𝒙U , 𝒙V = 𝑒
𝒙"#𝒙$

%

%&%

n …	
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Kernel algebra
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Quadratic kernel

Feature	mapping	given	by:
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Gaussian kernel (RBF)

Proof?

The	feature	mapping	is	
infinite	dimensional!	

Hint:
Taylor	expansion	of	exponential	function
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How to deal with imbalanced data?
• In	many	practical	applications	we	
may	have	imbalanced	data	sets	
• We	may	want	errors	to	be	equally	
distributed	between	the	positive	and	
negative	classes	
• A	slight	modification	to	the	SVM	
objective	does	the	trick!	
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Overfitting?
n Huge	feature	space	with	kernels:	should	we	
worry	about	overfitting?
q SVM	objective	seeks	a	solution	with	large	margin

l Theory	says	that	large	margin	leads	to	good	
generalization
(we	will	see	this	in	a	couple	of	lectures)

q But	everything	overfits	sometimes!!!
q Can	control	by:

l Setting	C
l Choosing	a	better	Kernel
l Varying	parameters	of	the	Kernel	(width	of	Gaussian,	etc.)
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How do we do multi-class classification?
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One versus rest classification

Learn	3	classifiers:	
•	- vs	{o,+},	weights	w-

•	+	vs	{o,-},	weights	w+	

•	o	vs	{+,-},	weights	wo

Predict	label	using:	

Any	problems?
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Multi-class SVM
Simultaneously	learn	
3	sets	of	weights:
• How	do	we	guarantee	

the	correct	labels?
• Need	new	constraints!

The	“score”	of	the	
correct	class	must	be	
better	than	the	“score”	
of	wrong	classes:
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Multi-class SVM
As	for	the	SVM,	we	introduce	slack	variables	and	
maximize	margin:	
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Outline

n Margin	and	Support	Vector

n Dual	Problem

n Soft	Margin	and	Regularization

n Kernel	Function

n Support	Vector	Regression

n Kernel	Methods
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Support vector regression
Allows	an	error					between	model	output	and	
ground	truth

0

region
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Loss function
Training	samples	falling	within						region	are	considered	as	
correctly	predicted,	that	is,	no	loss.	The	solution	of	SVR	is	
sparse	since	the	support	vectors	are	only	a	subset	of	the	
training	samples.

0

Least	squares	loss

SVR	loss
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Formulation

Original	
Problem

Dual	
Problem

Prediction
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Outline

n Margin	and	Support	Vector

n Dual	Problem

n Soft	Margin	and	Regularization

n Kernel	Function

n Support	Vector	Regression

n Kernel	Methods
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Representer theorem

Conclusion:	The	learned	models	of	SVM	and	SVR	can	be	
expressed	as	a	linear	combination	of	the	kernel	functions.
A	more	generalized	conclusion(representer	theorem):	for	
any	monotonically	increasing	function and any	non-
negative	loss	function			,	the	optimization	problem

Solution	can	be	written	in	the	form	of

SVM

SVR
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Summary

n Unusual	choice	of	separation	strategy:	
q Maximize	“street”	between	groups

n Attack	maximization	problem:
q Lagrange	multipliers	+	hairy	mathematics

n New	problem	is	a	quadratic	minimization
q Susceptible	to	fancy	numerical	methods

n Result	depends	on	dot	products	only
q Enables	use	of	kernel	methods
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Credits

n The	flow	of	this	SVM	lecture	goes	to
q Patrick	Winston,	Professor	of	Artificial	Intelligence
q Director	of	MIT	Artificial	Intelligence	Lab	(1992-1997)
q Taught	6.034:	Artificial	Intelligence

1943-2019

https://ocw.mit.edu/courses/6-034-artificial-
intelligence-fall-2010/
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Take Home Message

n The	“large	margin”	idea	of	SVM

n Dual	problem	and	the	sparsity	of	the	solution

n Solving	linear	inseparable	problems	by	projecting	to	high-
dimensional	space

n Solving	linear	inseparable	problems	in	the	feature	space	by	
introducing	“soft	margin”

n Utilizing	the	idea	of	support	vectors	into	regression	tasks	and	get	
SVR

n Extending	kernel	methods	to	other	learning	models
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Mature SVM packages

n LIBSVM
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

n LIBLINEAR
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

n SVMlight、SVMperf、SVMstruct

http://svmlight.joachims.org/svm_struct.html

n Scikit-learn	
http://scikit-learn.org/stable/modules/svm.html

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org/svm_struct.html

