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Lecture 8

Backpropagation
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Backprop

• Review of gradient descent, SGD

• Computation graphs

• Backprop through chains

• Backprop through MLPs

• Backprop through DAGs

• Optimization tricks

• Differentiable programming
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clown fish

Loss

Learned
Deep learning
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x

Gradient descent
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learning rate

One iteration of gradient descent:

Gradient descent
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Computation Graphs

A graph of functional transformations, 
nodes (     ), that when strung together 
perform some useful computation.

Deep learning deals (primarily) with 
computation graphs that take the form of 
directed acyclic graphs (DAGs), and for 
which each node is differentiable.



7

A Simple Example



8

A Simple Example
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A Simple Example
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…
…

(output)
• Consider model with     layers. Layer    has vector of 

weights

• Forward pass: takes input           and passes it 
through each layer      :

• An example of such a computation graph is an MLP

• Loss function compares         to   

• Overall cost is the sum of the losses over all 
training examples:

Chains

(input)
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…
…

Gradient descent

• We need to compute gradients of the cost with 
respect to model parameters.

• By design, each layer will be differentiable with respect 
to its inputs (the inputs are the data and parameters)
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Computing gradients

…
…

To compute the gradients, we could start by writing the full 
energy J as a function of the model parameters.

And then evaluate each partial derivatives separately… 

instead, we can use the chain rule to derive a compact algorithm:  backpropagation
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Matrix calculus

• We now define a function on vector    : 
• If     is a scalar, then 

• If    is a vector          , then (Jacobian formulation): 
The derivative of y is a row vector of size

• column vector of size           :

The derivative of y is a matrix of size 
(m rows and n columns)
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The output is a matrix of size 

Matrix calculus

• If    is a scalar and      is a matrix of size            , then 

Wikipedia: The three types of derivatives that have not been considered are those involving vectors-by-matrices, matrices-by-vectors, 
and matrices-by-matrices. These are not as widely considered and a notation is not widely agreed upon. 
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• Chain rule:
Matrix calculus

Its derivative is:
For the function:  

and writing              , and              : 

Example, if           ,           ,
with         length of vector             ,            ,  and 
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)
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Computing gradients

…
…

The loss J is the sum of the losses associated with each 
training example

Its gradient with respect to each of the network’s 
parameters  is:

Aka how much J varies when the parameter     is varied.
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Computing gradients

…
…

How much the loss changes when we change    ? 
The change is the product between how much the loss changes when we change the output of 
the last layer and how much the output changes when we change the layer parameters.

To compute the parameter update for the last 
layer, we can use the chain rule:
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Computing gradients

…
…

To compute the parameter update for the last 
layer, we can use the chain rule:

To compute the parameter update for the 
second-to-last layer:
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Computing gradients

…
…

To compute the parameter update for the 2nd  
and 1st layers:

Blue terms are all shared! Can compute that product 
once and share it between these two equations.
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The trick of backpropagation — reuse of computation 
(aka dynamic programming)

Gradient w.r.t. loss at layer L

Gradient w.r.t. loss at  
layer L-1 Layer L’s gradient



23

The trick of backpropagation — reuse of computation 
(aka dynamic programming)
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Hidden layer   

Forward
pass

Backpropagation — Goal: to update parameters of layer 

Backward
pass • Given the inputs, we just need to evaluate:

• Layer    has three inputs (during training)

• And three outputs
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1. Forward pass: for each training example, 
compute the outputs for all layers:

2. Backwards pass: compute loss derivatives 
iteratively from top to bottom:

3. Parameter update: Compute gradients 
w.r.t. weights, and update weights: 

Backpropagation Summary

…
…

(output)

(input)

…

…
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Linear layer
• Forward propagation: 

• Backprop to input: 

If we look at the i component of output xout, with respect to the j component of the input, xin:

Therefore:

With W being a 
matrix of size 
|xout|×|xin|
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• Backprop to input: 

Now let’s see how we use the set of outputs to compute the
weights update equation (backprop to the weights).

• Forward propagation: 

Linear layer
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• Backprop to weights: 

If we look at how the parameter Wij changes the cost, only the i component 
of the output will change, therefore:

• Forward propagation: 

And now we can update the weights:

Linear layer
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Weight updates:

Linear layer
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Now lets look at a whole MLP: Forward
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Now lets look at a whole MLP: Backward
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merge branch

DAGs
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Optimization

• What’s the knowledge we have about J?

–We can evaluate

–We can evaluate           and     

–We can evaluate           ,                , and     

Black box optimization

First order optimization

Gradient

Second order optimization
Hessian

Params
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Which are differentiable?
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Which will be hard to optimize?

Exploding gradient

Vanishing gradient

Vanishing gradient

Local minima
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• Want to minimize overall loss function J, which is sum of individual losses over each 
example.

• In Stochastic gradient descent, compute gradient on sub-set (batch) of data.

• If batchsize=1 then θ is updated after each example.

• If batchsize=N (full set) then this is standard gradient descent.

• Gradient direction is noisy, relative to average over all examples (standard gradient descent).

• Advantages

• Faster: approximate total gradient with small sample

• Implicit regularizer

• Disadvantages

• High variance, unstable updates

Stochastic Gradient Descent (SGD)
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• A heavy ball rolling down a hill, gains speed. 

• Gradient steps biased to continue in direction of previous update:

Momentum

• Can help or hurt. Strength of momentum is a hyperparam.



39https://distill.pub/2017/momentum/
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Differentiable programming
Deep learning Differentiable programming
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Differentiable programming

An emerging term for general models with these 
properties is differentiable programming.

Deep nets are popular for a few reasons:
1. Easy to optimize (differentiable)
2. Compositional “block based programming”
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Programmed by backprop
e.g., programmed by tuning behavior to match 
training examples

Programmed by a human
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Backprop lets you optimize any node (function) or edge (variable) in your 
computation graph w.r.t. any scalar cost
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Backprop lets you optimize any node (function) or edge (variable) in your 
computation graph w.r.t. any scalar cost

How the loss changes when the weights of that 
function (yellow) change
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Backprop lets you optimize any node (function) or edge (variable) in your 
computation graph w.r.t. any scalar cost

How the cost changes when the input data changes

How the loss changes when the functional node 
highlighted changes
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…

dolphin
cat
grizzly bear
angel fish
chameleon

iguana
elephant

clown fish

How much the total cost is increased or decreased by changing the 
parameters.

Optimizing parameters versus optimizing inputs
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How much the “chameleon” score is increased or decreased by 
changing the image pixels.

…

dolphin
cat
grizzly bear
angel fish
chameleon

iguana
elephant

clown fish

Optimizing parameters versus optimizing inputs
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Unit visualization

Make an image that maximizes the “cat” 
output neuron:

[https://distill.pub/2017/feature-visualization/]
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[https://distill.pub/2017/feature-visualization/]

Make an image that maximizes the 
value of neuron j on layer l of the 

network:

Unit visualization
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“Deep dream” [https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html]
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…

dolphin
cat
grizzly bear
angel fish
School bus

iguana
ostrich

clown fish

Adversarial attacks

What adversarial signal r should we add to change the output label?
𝜕𝑦!
𝜕𝑟

Input

[“Intriguing properties of neural networks”, Szegedy et al. 2014]

+ r

Adversarial signal 
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Adversarial attacks

“Ostrich”

[“Intriguing properties of neural networks”, Szegedy et al. 2014]

+ =

“School bus”
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CLIP

[https://openai.com/blog/clip/]

https://openai.com/blog/clip/
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CLIP+GAN

“Some sentence”

To maximize 
this

Optimize this

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Differentiable program that measures the similarity between text and images

Image
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CLIP+GAN

“A cat”

To maximize 
this

Optimize this

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Differentiable program that measures the similarity between text and images
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CLIP+GAN

“What is the answer to the 
ultimate question of life, 

the universe, and everything?”

To maximize 
this

Optimize this

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Differentiable program that measures the similarity between text and images
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CLIP+GAN

“What is the answer to the 
ultimate question of life, 

the universe, and everything?”

To maximize 
this

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Differentiable program that measures the similarity between text and images

Image
Generator

Optimize this
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Backpropagation example
node 1

node 2

node 3

node 4

node 5

w13=1

0.2

-3

1

1

-1

input output

tanh

tanh

linear

Learning rate η = -0.2 (because we used positive increments)
Euclidean loss

Exercise: run one iteration of back propagation

Training data: desired output
node 1 node 2 node 5

input

1.0 0.1 0.5
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Backpropagation example
node 1

node 2

node 3

node 4

node 5

w13=1.02

0.17

-3.0

1.0

1.02

-0.99

input output

tanh

tanh

linear

After one iteration (rounding to two digits)
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Step by step solution



61

First, let’s rewrite the network using the modular block notation:

We need to compute all these terms simply so we can find the weight updates at the bottom.

3
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Our goal is to perform the following two updates:

where Wk are the weights at some iteration k of gradient descent given by the first slide:
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Now, by the chain rule, we can derive equations, working backwards, for each remaining 
term we need:

First we compute the derivative of the loss with respect to the output:

ending up with our two gradients needed for the weight update:

Notice the ordering of the two terms being multiplied 
here. The notation hides the details but you can write 
out all the indices to see that this is the correct ordering 
— or just check that the dimensions work out.
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Finally, we simply plug these values into our equations and compute the numerical updates:

The values for input vector x0 and target y are also given by the first slide:

Forward pass:
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Backward pass:

diagonal matrix because tanh is a 
pointwise operation
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Gradient updates:


