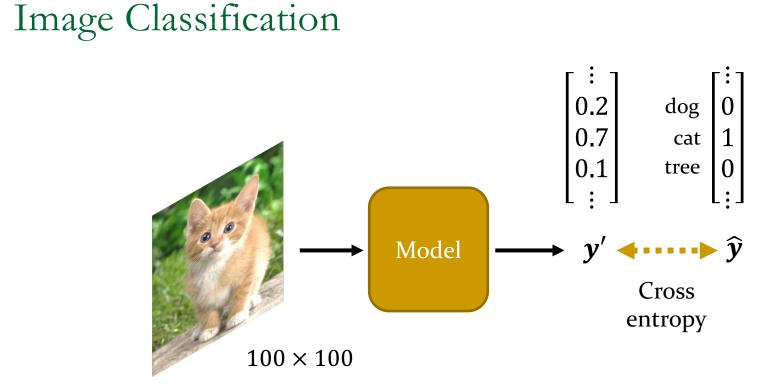
Lecture 9 Convolution Neural Network

1

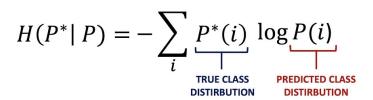


(All the images to be classified have the same size.)

Machine Learning

Cross-Entropy

Intuitively Understanding the Cross Entropy



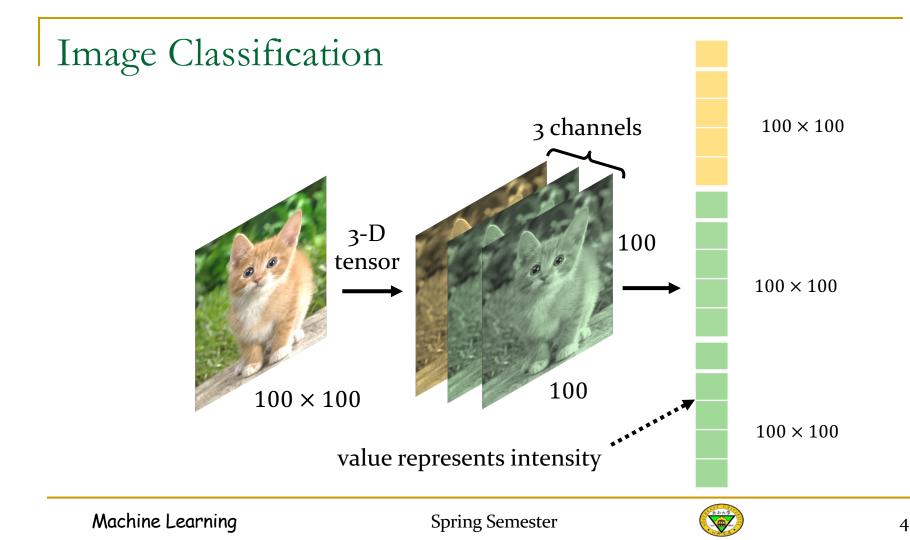
Intuitively Understanding the KL divergence

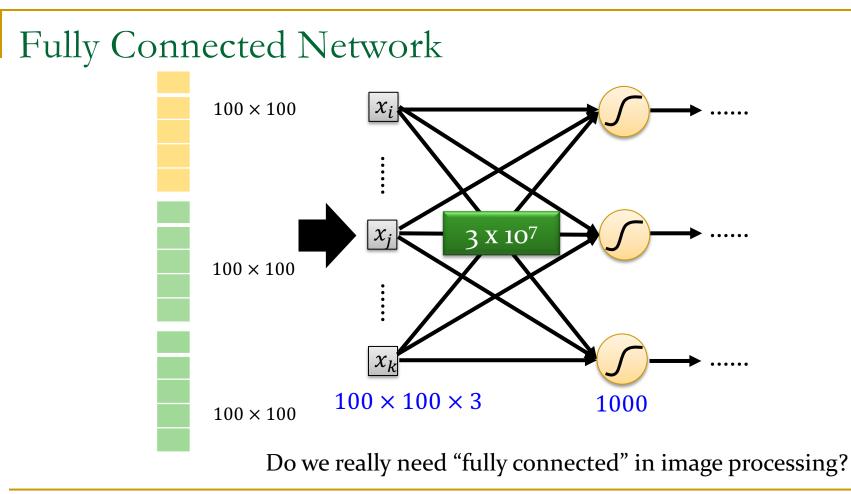
KL is not symmetric

$$D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

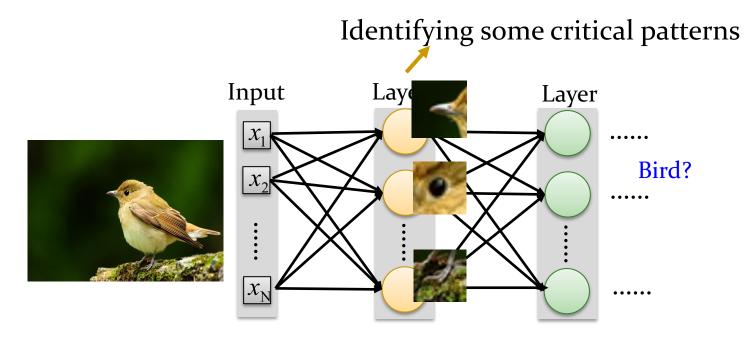
$$\log \frac{p_1}{q_1} + \frac{p_2}{q_2} \log \frac{p_2}{q_2}$$

 p_1





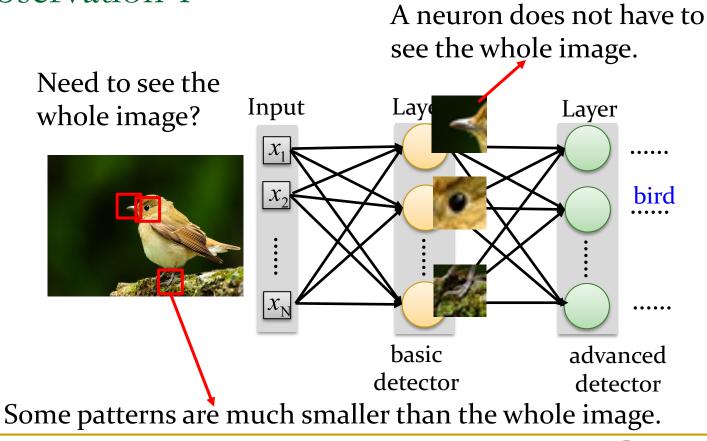
Observation 1



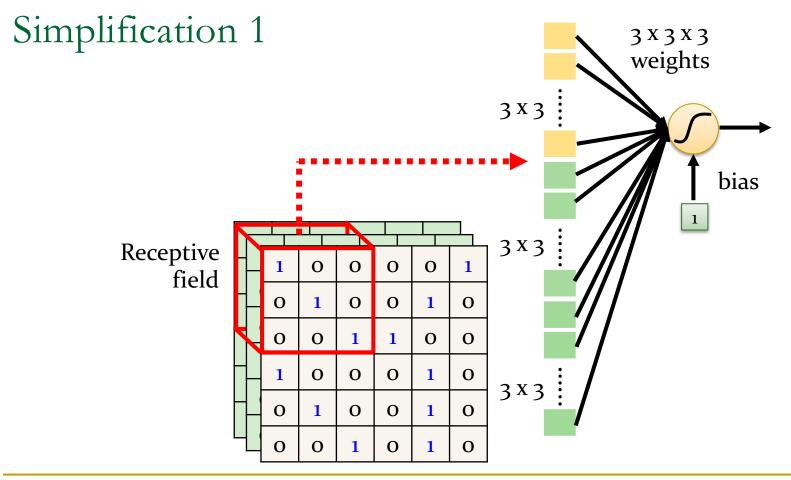
Perhaps human also identify birds in a similar way ... ③

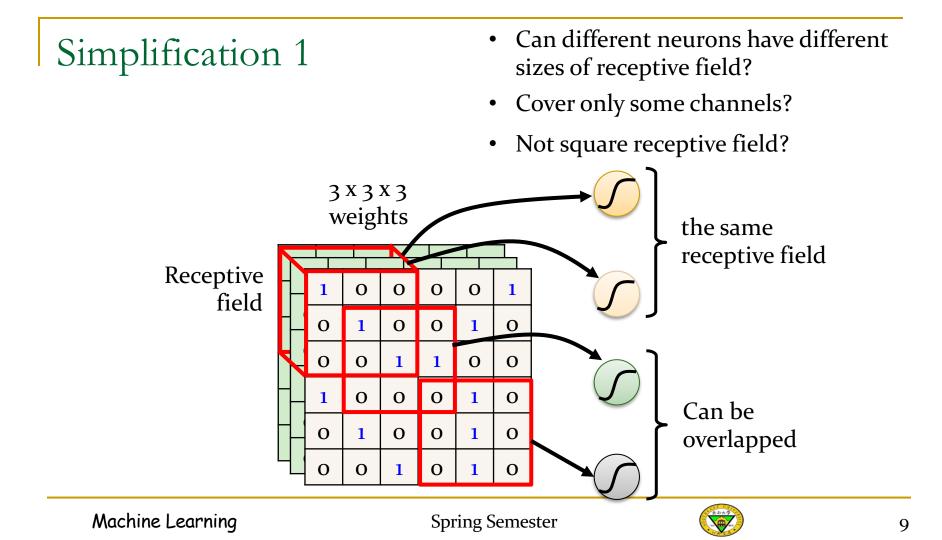
Machine Learning

Observation 1



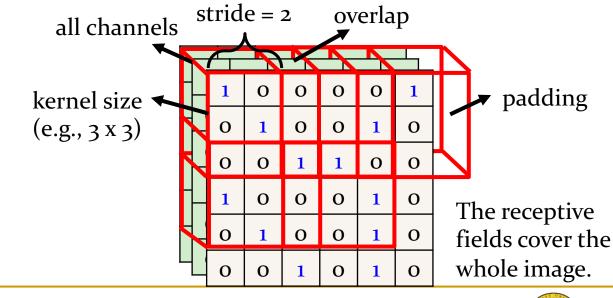
Machine Learning





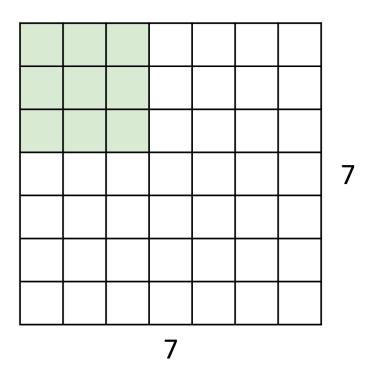
Simplification 1 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).



Machine Learning

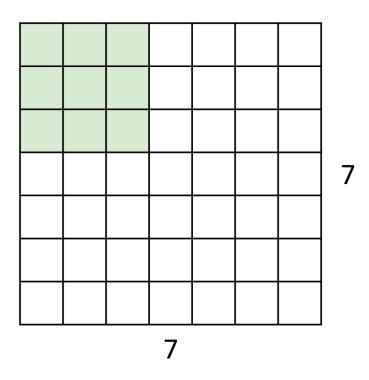
Convolution Spatial Dimensions



Input: 7x7 Filter: 3x3

Q: How big is output?

Convolution Spatial Dimensions

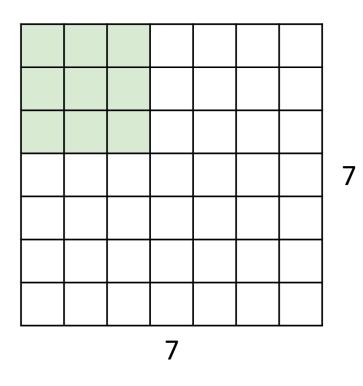


Input: 7x7 Filter: 3x3

Q: How big is output?

Output: 5x5

Convolution Spatial Dimensions



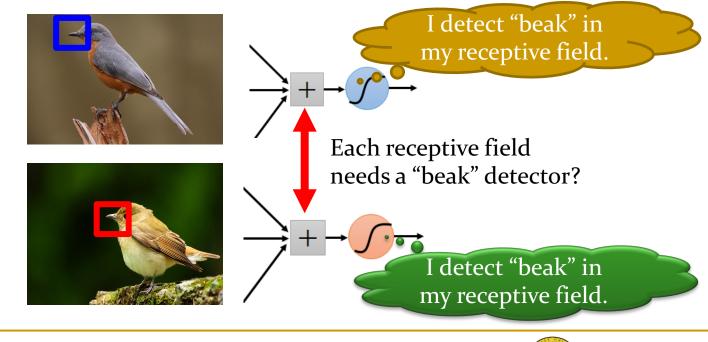
Input: 7x7 Filter: 3x3

Q: How big is output? Output: 5x5

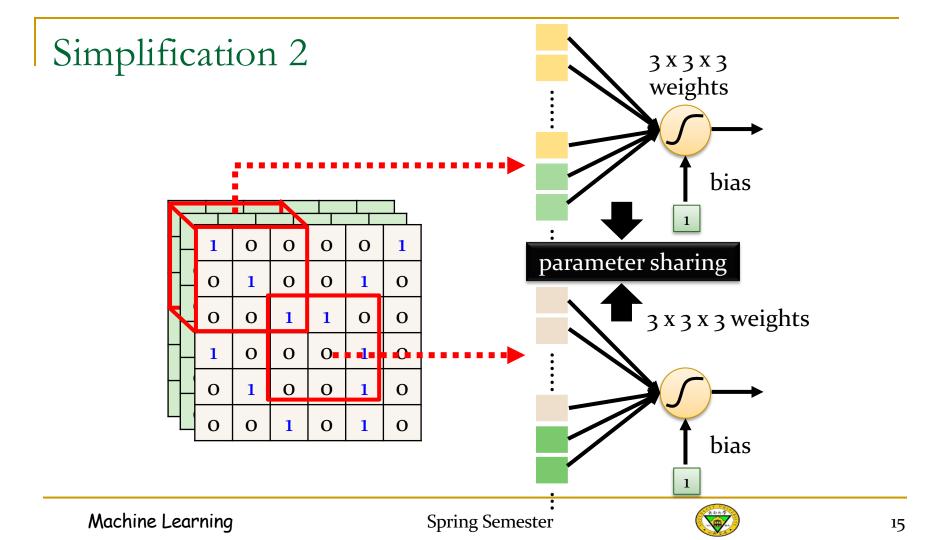
In general: Input: W Filter: K Output: W – K + 1

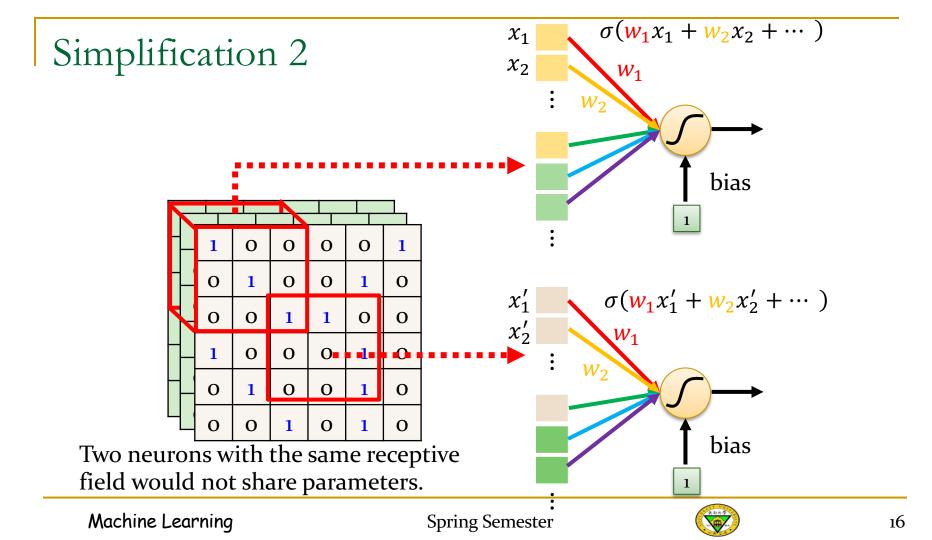
Observation 2

The same patterns appear in different regions.



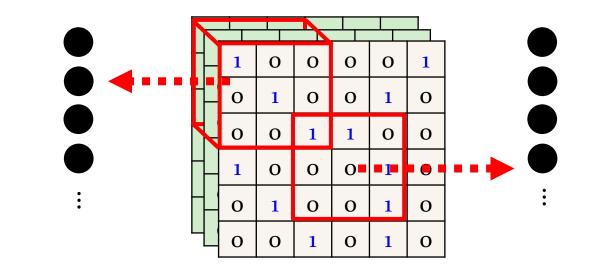
Machine Learning





Simplification 2 – Typical Setting

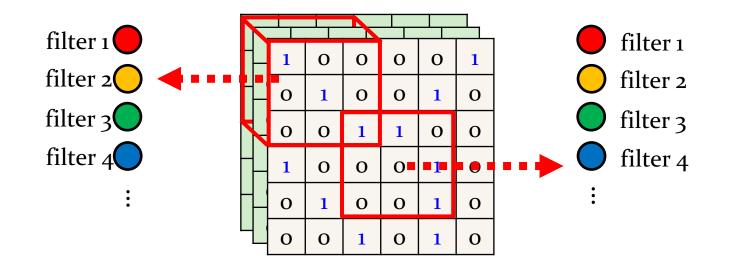
Each receptive field has a set of neurons (e.g., 64 neurons).



Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

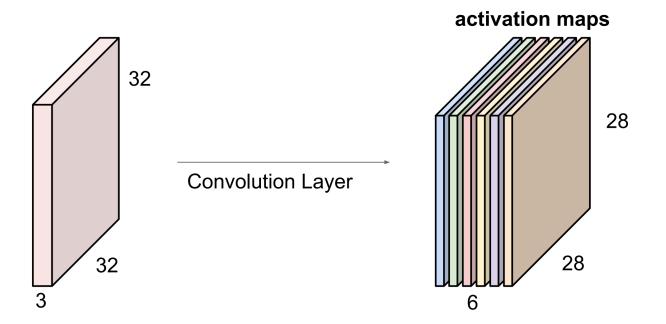
Each receptive field has the neurons with the same set of parameters.



https://cs231n.github.io/assets/conv-demo/

Stacking Convolution Filters

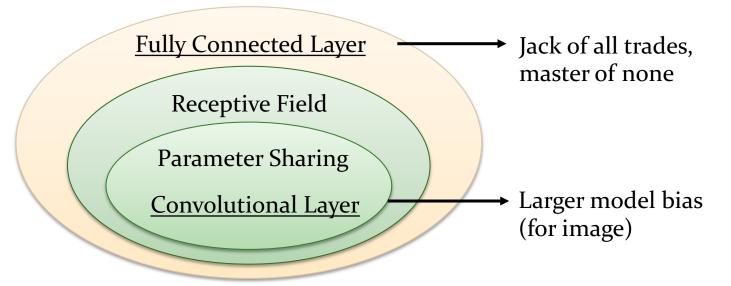
For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



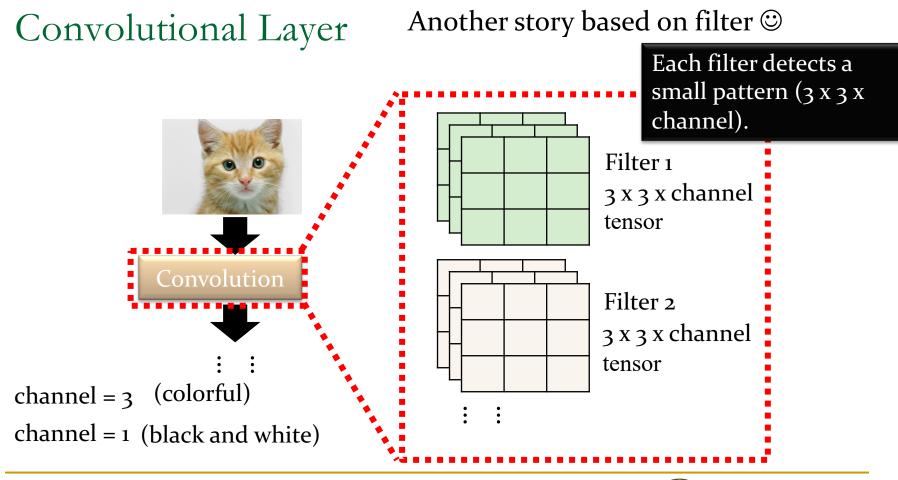
We stack these up to get a "new image" of size 28x28x6!

Machine Learning

Benefit of Convolutional Layer

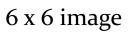


- Some patterns are much smaller than the whole image.
- The same patterns appear in different regions.



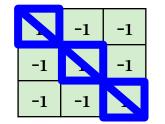
Consider channel = 1 (black and white image)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0



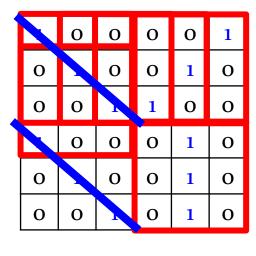
:

: (The values in the filters are unknown parameters.)

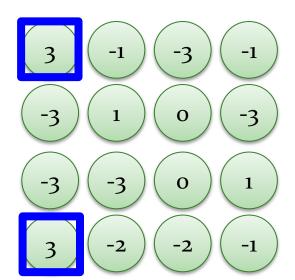


Filter 1

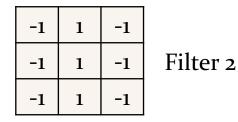
stride=1



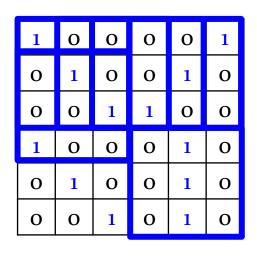
6 x 6 image



Machine Learning

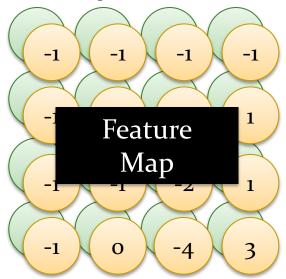


stride=1

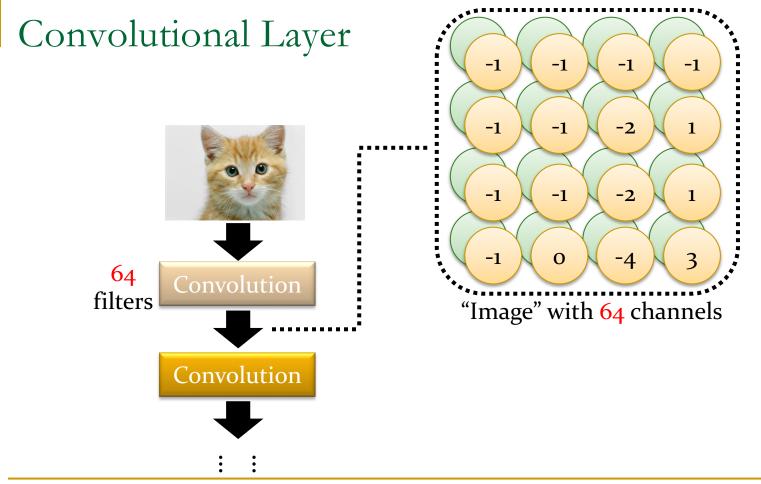


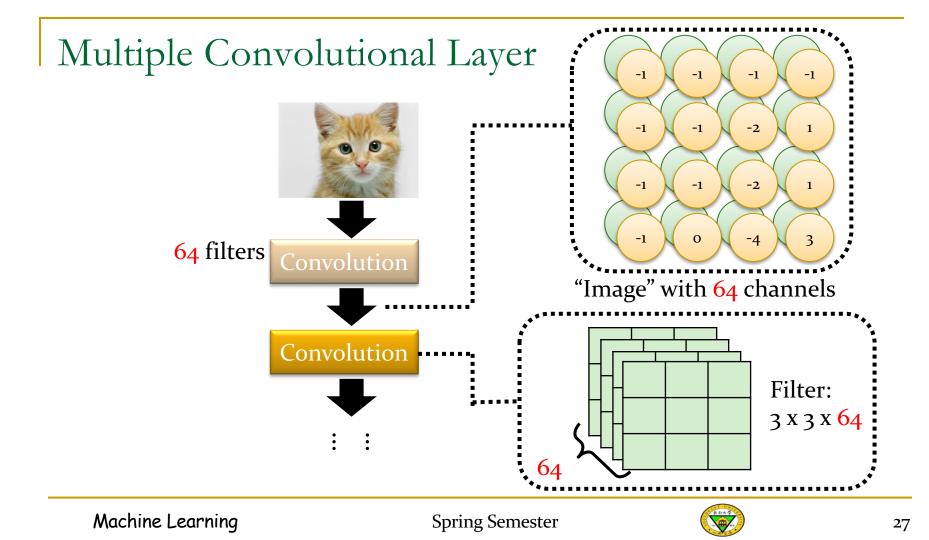
6 x 6 image

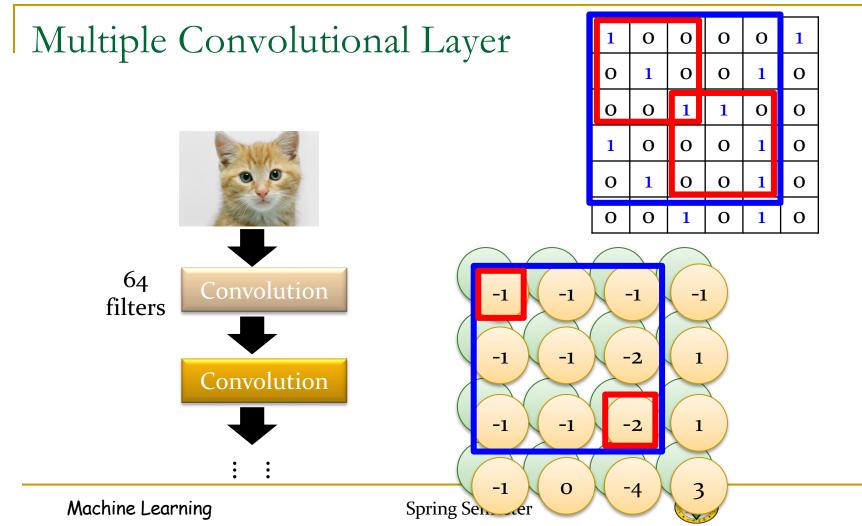
Do the same process for every filter

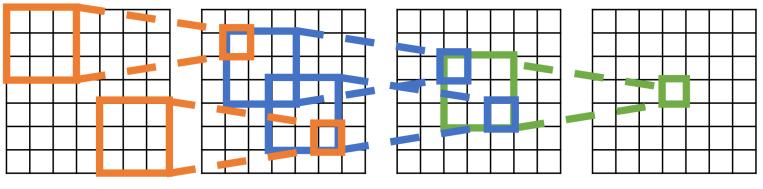


1 40 ± 12









Input

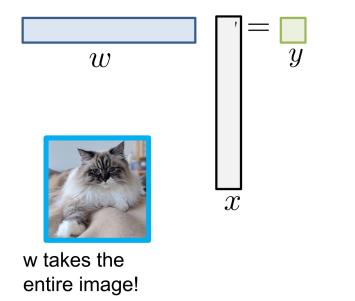
Output

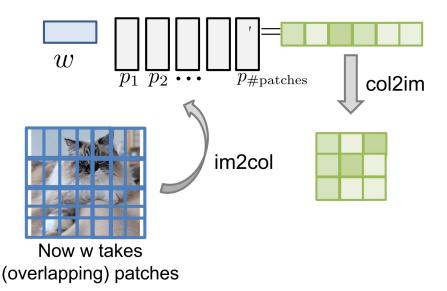
<u>Neuron Version Story</u>	<u>Filter Version Story</u>	
Each neuron only considers a receptive field.	There are a set of filters detecting small patterns.	
The neurons with different receptive fields share the parameters.	Each filter convolves over the input image.	

They are the same story.

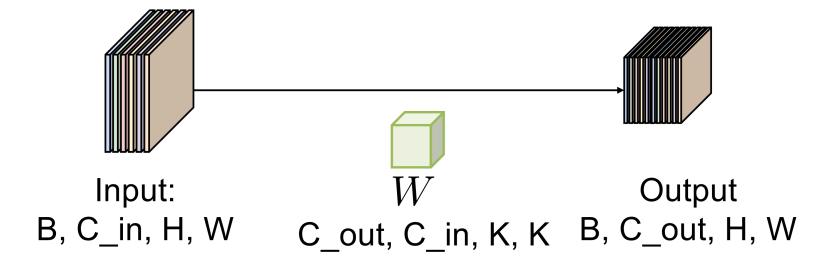
We're still doing matrix multiplications, just localized & shared

Recall one neuron in FC layer:



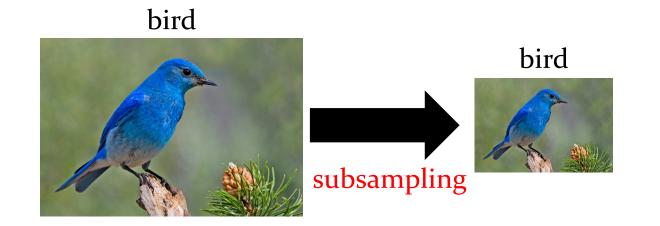


What needs to be learned?



Observation 3

Subsampling the pixels will not change the object



Pooling – Max Pooling

-1

1

-1

1

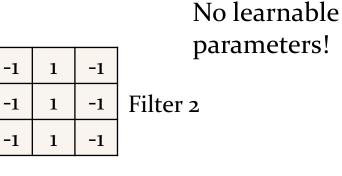
-1

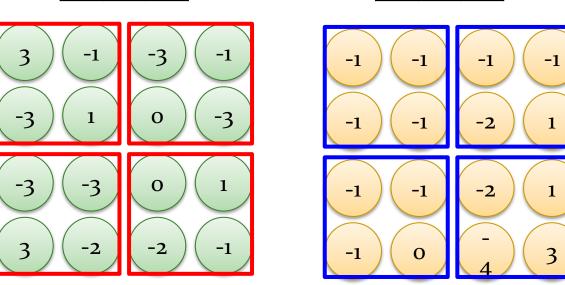
-1

-1

-1

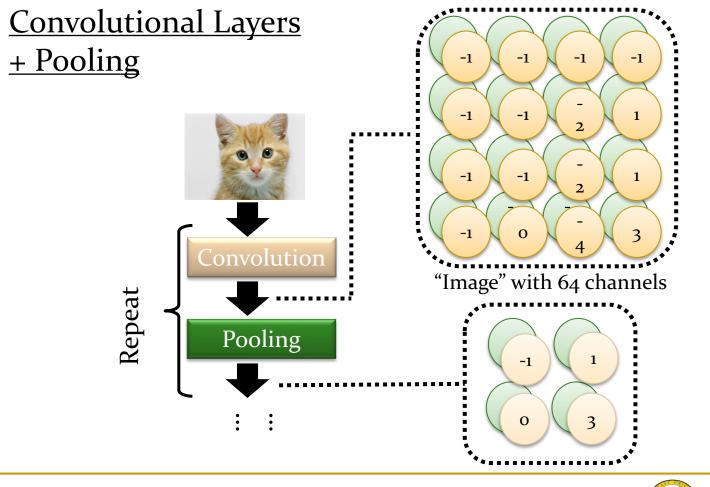
1

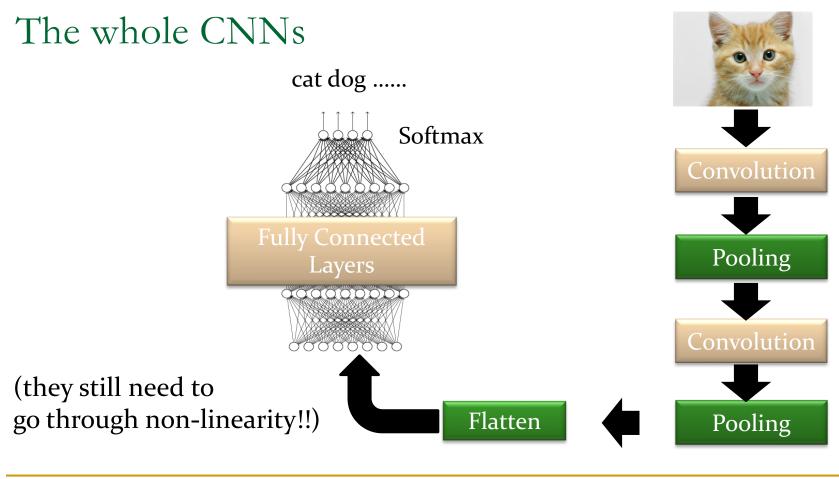


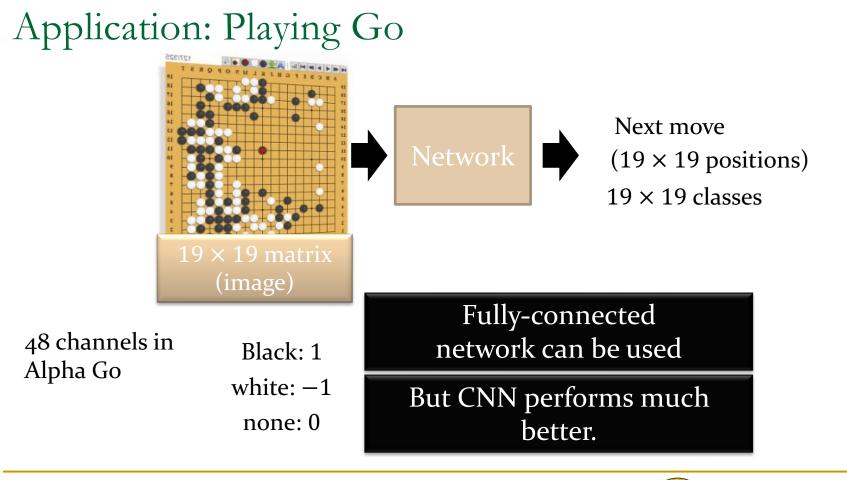


Filter 1

Machine Learning





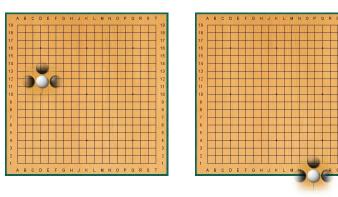


Why CNN for Go playing?

Some patterns are much smaller than the whole image

Alpha Go uses 5×5 for first layer

The same patterns appear in different regions.



import torch.nn as nn import torch.nn.functional as F

```
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
```

```
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```

net = Net()

import torch.optim as optim

```
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```

```
for epoch in range(2): # 多批次循环
```

```
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
    # 获取输入
    inputs, labels = data
```

梯度置0
optimizer.zero_grad()

正向传播,反向传播,优化
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

To learn more ...

 CNN is not invariant to scaling and rotation (we need data augmentation ⁽²⁾).

