Machine Learning Course 2024 Spring: Homework 2

March 31, 2024

1 Problem 1

Solution:

1. A linear SVM with C = 0.02.

Solution: Correspond to Figure 1.4. The decision boundary of linear SVM is linear.
In comparison with Figure 1.3 , the line does not separate two classes strictly, which

corresponds to the case C' is small and more errors are allowed.

2. A linear SVM with C = 20.

Solution: Correspond to Figure 1.3. The decision boundary of linear SVM is linear. In
comparison with Figure 1.4, the line separates two classes strictly, which corresponds to

the case C' is big.

3. A hard-margin kernel SVM with x(u,v) = u'v + (uTv)Q.

Solution: Correspond to Figure 1.5. The decision boundary of quadratic kernel is given
by f(x) =), (a::w + (a:szc)2) +b . Hence the decision boundary is f(x) = 0 . Since
f() is second order function of &, the curve can be ellipse or hyperbolic curve. Figure

1.5 is hyperbolic curve.

4. A hard-margin kernel SVM with x(u,v) = exp (—5||u — v||?) .

Solution: Correspond to Figure 1.6. We can write out the decision function as f(x) =

Saiexp (=l — :13||2) + b . If v is large, the kernel value is quite small even if the



distance between the x and @; is small. This makes the classification hard with few

supporting vectors, Hence Figure 1.6 corresponds to v =5 .

5. A hard-margin kernel SVM with s(u,v) = exp (—1/u — v|?) .

Solution: Correspond to Figure 1.1.

2 Problem 2

Solution:

1. Construct the Lagrangian:
Lz, A, p) Zlog a; + ;) Z z’(—ﬂﬁi)Jﬁu(in—l), (1)
i=1 i=1
where € = [11,...,2,] ", A =[\,..., A\ €R", and p € R.

The KKT conditions are:

(1) —2f <0,i=1,...,n

(2) 27 —1=0

(3) Mf>0,i=1,...,n

(4) Maf=0,i=1,...,n

(5) Ve L(@", A ") = e = A4t =0,i =1,

2. According to the KKT conditions (3)-(5), we have

T = ——) =0i=1...n (2)
1

UL S I 3

# _04,-—|—ij " (3)

(1) If p* < =, BEq.(3) is satisfied when x7 > 0. Then, according to Eq.(2), we have

(2) If * > L, according to Eq.(2), we have z} = 0.



Thus we have,

1
r; = max{0, — — a;}. (4)
o
Substituting Eq.(4) into the condition (2), we can obtain

- 1
Z max{0, — —a;} = 1. (5)
i=1 H

Therefore, the optimal solution of the problem is 2} = max{0, ;% — ;i =1,...,n,

where p* satisfies Eq.(5)

]
Problem 3
1. Solution:
() — ()|
= o) " ¢(x;) + o) d(;) — 20(x:) " d(;)
= k(x;, ;) + k(x), ;) — 2k(x;, x;5)
1
= 1+ 1= 2exp(— |l — a[*)
<2
m
2. Proof:
Consider a simpler kernel function x'(z;, ;) = @/ x; + ¢ first. For any dataset D =
{x1, 22, -, X, }, the kernel matrix K’ is:
K(xy,21) - K(x1,T) iz +c - xmlx,tcC
K = : : = : : . (6)
K (T, 1) - K (T, T ' xi+c - x Xyt



The kernel matrix can be further rewritten as

T - xT, c - ¢
K=| : -~ |+
x| x| x| T, c c
x| 1 (7)
= (:cl a:m> +c|: <1 1)
T, 1
= XX 411",

where X € R™*? is the data matrix. Considering the positive definiteness of matrix K’,

for any non-zero vector w € R™, we have

w Kw=w'(XX"+cl11"w
=w XX 'w+cw'11Tw
= (X"w) (X w) + c(1Tw)" (1T w)
= | X w|* + (1" w)*.
(a) When ¢ > 0, we have w' K'w > 0, thus, K’ is semi-positive definite. According
to Mercer’s Theorem (refer to page 55 of Lecture 6 slides), x'(x;, x;) is a kernel
function. According to the kernels’ composition rule (refer to page 57 of Lecture 6

slides), k(x;, ;) = (k'(x;, ;)" is also a kernel function as a multiplication of N

kernel functions.

(b) When ¢ < 0, it cannot be guaranteed that w ' K'w > 0, thus, K’ is not semi-positive

definite. Consequently, x(x;, ;) is not a kernel function.



