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March 31, 2024

1 Problem 1

Solution:

1. A linear SVM with C = 0.02.

Solution: Correspond to Figure 1.4. The decision boundary of linear SVM is linear.

In comparison with Figure 1.3 , the line does not separate two classes strictly, which

corresponds to the case C is small and more errors are allowed.

2. A linear SVM with C = 20.

Solution: Correspond to Figure 1.3. The decision boundary of linear SVM is linear. In

comparison with Figure 1.4, the line separates two classes strictly, which corresponds to

the case C is big.

3. A hard-margin kernel SVM with κ(u,v) = u⊤v +
(
u⊤v

)2
.

Solution: Correspond to Figure 1.5. The decision boundary of quadratic kernel is given

by f(x) =
∑

i αi

(
x⊤
i x+

(
x⊤
i x

)2)
+ b . Hence the decision boundary is f(x) = 0 . Since

f(x) is second order function of x, the curve can be ellipse or hyperbolic curve. Figure

1.5 is hyperbolic curve.

4. A hard-margin kernel SVM with κ(u,v) = exp (−5∥u− v∥2) .

Solution: Correspond to Figure 1.6. We can write out the decision function as f(x) =∑
i αi exp

(
−γ ∥xi − x∥2

)
+ b . If γ is large, the kernel value is quite small even if the
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distance between the x and xi is small. This makes the classification hard with few

supporting vectors, Hence Figure 1.6 corresponds to γ = 5 .

5. A hard-margin kernel SVM with κ(u,v) = exp
(
−1

5
∥u− v∥2

)
.

Solution: Correspond to Figure 1.1.

2 Problem 2

Solution:

1. Construct the Lagrangian:

L(x,λ, µ) = −
n∑

i=1

log(αi + xi) +
n∑

i=1

λi(−xi) + µ(
n∑

i=1

xi − 1), (1)

where x = [x1, . . . , xn]
⊤,λ = [λ1, . . . , λn]

⊤ ∈ Rn, and µ ∈ R.

The KKT conditions are:

(1) −x∗
i ≤ 0, i = 1, . . . , n

(2)
∑n

i=1 x
∗
i − 1 = 0

(3) λ∗
i ≥ 0, i = 1, . . . , n

(4) λ∗
ix

∗
i = 0, i = 1, . . . , n

(5) ∇x∗
i
L(x∗,λ∗, µ∗) = − 1

αi+x∗
i
− λ∗

i + µ∗ = 0, i = 1, . . . , n

2. According to the KKT conditions (3)-(5), we have

x∗
i (µ

∗ − 1

αi + x∗
i

) = 0, i = 1, . . . , n (2)

µ∗ ≥ 1

αi + x∗
i

, i = 1, . . . , n (3)

(1) If µ∗ < 1
αi
, Eq.(3) is satisfied when x∗

i > 0. Then, according to Eq.(2), we have

x∗
i =

1
µ∗ − αi;

(2) If µ∗ ≥ 1
αi
, according to Eq.(2), we have x∗

i = 0.
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Thus we have,

x∗
i = max{0, 1

µ∗ − αi}. (4)

Substituting Eq.(4) into the condition (2), we can obtain

n∑
i=1

max{0, 1

µ∗ − αi} = 1. (5)

Therefore, the optimal solution of the problem is x∗
i = max{0, 1

µ∗ − αi}, i = 1, . . . , n,

where µ∗ satisfies Eq.(5)

3 Problem 3

1. Solution:

||ϕ(xi)− ϕ(xj)||2

= ϕ(xi)
⊤ϕ(xi) + ϕ(xj)

⊤ϕ(xj)− 2ϕ(xi)
⊤ϕ(xj)

= κ(xi,xi) + κ(xj,xj)− 2κ(xi,xj)

= 1 + 1− 2 exp(−1

2
||xi − xj||2)

< 2

2. Proof:

Consider a simpler kernel function κ′(xi,xj) = x⊤
i xj + c first. For any dataset D =

{x1,x2, · · · ,xm}, the kernel matrix K′ is:

K′ =


κ′(x1,x1) · · · κ′(x1,xm)

...
. . .

...

κ′(xm,x1) · · · κ′(xm,xm)

 =


x⊤
1 x1 + c · · · x⊤

1 xm + c
...

. . .
...

x⊤
mx1 + c · · · x⊤

mxm + c

 . (6)
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The kernel matrix can be further rewritten as

K′ =


x⊤
1 x1 · · · x⊤

1 xm

...
. . .

...

x⊤
mx1 · · · x⊤

mxm

+


c · · · c
...

. . .
...

c · · · c



=


x⊤
1

...

xm

(
x1 · · · xm

)
+ c


1
...

1

(
1 · · · 1

)

= XX⊤ + c11⊤,

(7)

where X ∈ Rm×d is the data matrix. Considering the positive definiteness of matrix K′,

for any non-zero vector w ∈ Rm, we have

w⊤K′w = w⊤(XX⊤ + c11⊤)w

= w⊤XX⊤w + cw⊤11⊤w

= (X⊤w)⊤(X⊤w) + c(1⊤w)⊤(1⊤w)

= ||X⊤w||2 + c(1⊤w)2.

(8)

(a) When c ≥ 0, we have w⊤K′w ≥ 0, thus, K′ is semi-positive definite. According

to Mercer’s Theorem (refer to page 55 of Lecture 6 slides), κ′(xi,xj) is a kernel

function. According to the kernels’ composition rule (refer to page 57 of Lecture 6

slides), κ(xi,xj) = (κ′(xi,xj))
N is also a kernel function as a multiplication of N

kernel functions.

(b) When c < 0, it cannot be guaranteed that w⊤K′w ≥ 0, thus, K′ is not semi-positive

definite. Consequently, κ(xi,xj) is not a kernel function.
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