Chapter 11

Decision Tree

Machine Learning Spring Semester

‘ Tree-based Models

Input data Nearest Neighbors Linear SVM RBF SVM Gaussian Process Decision Tree Random Forest Neural Net

it

Machine Learning Spring Semester

Machine Learning 1: 81-106, 1986
© 1986 Kluwer Academic Publishers, Boston — Manufactured in The Netherlands

Induction of Decision Trees

J.R. QUINLAN (munnari!nswitgould.oz!quinlan@seismo.css.gov)
Centre for Advanced Computing Sciences, New South Wales Institute of Techrnology, Sydney 2007,
Australia

(Received August 1, 1985)

Key words: classification, induction, decision trees, information theory, knowledge acquisition, expert
systems

Abstract. The technology for building knowledge-based systems by inductive inference from examples has
been demonstrated successfully in several practical applications. This paper summarizes an approach to
synthesizing decision trees that has been used in a variety of systems, and it describes one such system,
ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal
with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is
discussed and two means of overcoming it are compared. The paper concludes with illustrations of current
research directions.

Machine Learning Spring Semester

‘ Tree-based Models

Feature importances with a forest of trees

This example shows the use of a forest of trees to evaluate the importance of features on an artificial classification task. The blue
bars are the feature importances of the forest, along with their inter-trees variability represented by the error bars.

As expected, the plot suggests that 3 features are informative, while the remaining are not.

Feature importances using MDI

impurity-based importance

accumulation of the impurity
decrease within each tree
(random forest)

Mean decrease in impurity
o
N
o

feature 0
feature 1
feature 2
feature 3
feature 4
feature 5
feature 6
feature 7
feature 8
feature 9

Machine Learning Spring Semester

‘ Outline

m Basic Process

Machine Learning Spring Semester

Characteristics of Decision Trees

Non-linear classifier / regression.
Easy to use.

Easy to interpret.

Susceptible to overfitting but can be avoided.

Machine Learning Spring Semester

‘ Basic Process

= A decision tree makes decisions based on tree
structures.

color—’?

/\

root '? " e 0

curly J \

uound='?

muffied \

Machine Learning Spring Semester

Basic Process

Every question asked in the decision process is a “test” on one
feature.

The conclusions at the end of the decision process correspond
to the possible classifications.

Every test leads to either the conclusion or an additional test
conditioned on the current answer.

Each path from the root node to the leaf node is a decision
sequence.

The goal is to produce a tree that can

generalize to predict unseen samples.

Machine Learning Spring Semester

‘ Basic Process

(1) All samples in the
Input: Training set D = {(z1,91), (€2,42), -+, (Zm,Ym)}: current node belong to
Feature set A = {ay,as,...,aq4}. the same ClaSS.

Process: Function TreeGenerate(D, A)
I: Generate node 7;
2: if All samples in D belong to the same class C' then

Algorithm 4.1 Decision Tree Learning.

(2) The current feature

- if A = @ OR all samples in D take the same value on A then .
set is empty, or all

6:

Joendit samples have the same
8: Select the optimal splitting feature a. from A;

9: for each value a? in a« do feature Values.

10: Generate a branch for node i; Let D,, be the subset of samples taking value al on a,;

11: if D, is empty then

12 [k this child mode a a e mode. and Tab i he majoy s T D rern |

13: else

14: Use TreeGenerate(D,, A\{a« }) as the child node. (3) There is no Sample 1n
150 endif

16: end for the current node.

Output: A decision tree with root node i.

Machine Learning Spring Semester

‘ Outline

= Split Selection

Machine Learning

Spring Semester

10

Split Selection

The core of the decision tree learning algorithm is
selecting the optimal splitting feature. Generally
speaking, as the splitting process proceeds, we wish
more samples within each node to belong to a single
class, that is, increasing the purity of each node.

Classical Guidelines for Selecting the Splitting
Features:

o Information Gain
o Gain Ratio

o Gini Index

Machine Learning Spring Semester 1

Split Selection: Information Gain

One of the most commonly used measures for purity is
information entropy, or simply entropy. Let p, denote the
proportion of the k-th class in the current data set D,
where k = 1,2, ..., |Y|. Then, the entropy is defined as

M
Ent(D) = — Zpk loga px
k=1

The lower the Ent(D), the higher the purity of D.

In the calculation of entropy, p log, p = 0 when p = 0.
The minimum of Ent(D) is 0 and the maximum is log, |Y].

Machine Learning Spring Semester 12

Split Selection: Information Gain

Suppose that the discrete feature @ has V possible values{a', a?, ..., a" }.
Then, splitting the data set D by feature @ produces V child nodes, where
the Vth child node D?includes all samples in D taking the value a" for
feature . Then, the information gain of splitting the data set D with
feature 0 is calculated as
~ [
Gain(D,a) = Ent(D) —) WEm(pv)
v=1

is the importance of each node. The greater the number
of samples, the greater the impact of the branch node.

In general, the higher the information gain, the more purity
improvement we can expect by splitting D with feature @ .

The decision tree algorithm ID3 [Quinlan, 1986] takes information gain
as the guideline for selecting the splitting features.

Machine Learning Spring Semester 13

‘ What is Information?

> If the probability of this event happening is small
and it happens, the information is large.

* Observing the outcome of a coin flip is head.

 Observe the outcome of a dice is 6.

= -0, 2= 255 () 50 60 60 60 690

Machine Learning Spring Semester

14

What is Entropy?

» The expected amount of information when observing

the output of a random variable X.
H(X) = E100) =) pledl(x) = pxp)logap(x:)

> If the X can have 8 outcomes and all are equally likely.

1 1
H(X) = —Zglog2§= 3
L

Machine Learning Spring Semester

15

‘ Split Selection: Information Gain

= A Concrete Example

This data set

includes 17
training samples.
8/17 of them are

1D color root sound texture umbilicus surface ripe
1 green curly muffled clear hollow hard true
2 dark curly dull clear hollow hard true
3 dark curly muffled clear hollow hard true
4 green curly dull clear hollow hard true
5 light curly muffled clear hollow hard true
6 green slightly curly muffled clear slightly hollow soft true
7 dark slightly curly muffled slightly blurry slightly hollow soft true
8 dark slightly curly muffled clear slightly hollow hard true
9 dark slightly curly dull slightly blurry slightly hollow hard false
10 green straight crisp clear flat soft false
11 light straight crisp blurry flat hard false
12 light curly muffled blurry flat soft false
13 green slightly curly muffled slightly blurry hollow hard false
14 light slightly curly dull slightly blurry hollow hard false
15 dark slightly curly muffled clear slightly hollow soft false
16 light curly muffled blurry flat hard false
17 green curly dull slightly blurry slightly hollow hard false

positive and 9/17
of them are
negative. the
entropy of the
root node is

2
Ent(D) = — Zpk loga pr = —(
k=1

8
17

— o

8

9 9

17 17

Machine Learning

Spring Semester

16

Split Selection: Information Gain

O If D is split by color, then there are 3 subsets:
D' (color = green), D? (color = dark) and D? (color = light).

O Subset D' includes 6 samples {1, 4, 6,10, 13, 17}, in which
P1 = g of them are positive and p2 = = of them are
negative. D? and D? can be discussed S|m|IarIy The
entropy of the 3 child nodes are

Ent(D') = —(2logas + 3 loge2) = 1.000
Ent(D?) = — (5 logyz + 2 logs2) = 0.918
Ent(D?) = — (£ logas + £ logaz) = 0.722
O The information gain of splitting by color is
3 v
Gain(D, color) = Ent(D) — Z |€)||
=1
= 0.998 — (3 x 1.000 + £ x 0.918 4+ = x 0.722)
= 0.109

Ent(D")

Split Selection: Information Gain

Similarly, we calculate the information gain of other
features:
Gain(D, root) = 0.143; Gain(D,sound) = 0.141;
Gain(D, texture) = 0.381; Gain(D, umbilicus) = 0.289;
Gain(D, surface) = 0.006.

Since splitting by texture gives the highest
information gain, it is chosen as the splitting feature.

[texture="7 J

clear blurry
slightly blurry

{1,2,3,4,5, 6,8, 10, 15}] [{7, 9, 13, 14, 17}] [{11, 12, 16}]

18

Machine Learning Spring Semester

‘ Split Selection: Information Gain

= Then, each child node is further split by the decision tree
algorithm. We can obtain the final decision tree:

[texture="7 J

blurry

clear
slightly~blurry

surface="7

Machine Learning Spring Semester

19

ID3 Algorithm

Algorithm 1 ID3

procedure ID3(T)
if 7" only consists of the same target values then
return Leaf with target value
else if 7" has the same values for the same attributes but
different target values then
return Leaf with target value that occurs most
end if
a <— Attribute in 7" with highest information gain
node <— Node with attribute a
partitions < PARTITION(T ,a)
for partition in partitions do
subtree < I1D3(partition)
Add subtree to node
end for
return node
end procedure

Machine Learning Spring Semester

20

ID3 Algorithm

Algorithm 2 Partitioning

procedure PARTITION(1, a)
partitions < ()
for every value v that the attribute a can have in 7' do
partition < all sets in 1" that have the value v on
attribute a
Add partition to partitions
end for
return partitions
end procedure

Machine Learning Spring Semester

21

Split Selection: Information Gain

Bias

If we consider ID as a candidate splitting feature,
its information gain will be much higher than

that of any other features in general. However,
such a decision tree does not have generalization
ability and cannot effectively predict new samples.

[t turns out that the information gain criterion is biased
towards features with more possible values.

Machine Learning Spring Semester 22

Split Selection: Gain Ratio

O The gain ratio (normalized) of feature a is defined as

Gain_ratio(D, a) = Gaii{}((?),a)
where
‘ |DU| 'aln) . |D'v| . .
Z |D| > D) (D, a) = Ent(D) - Z o) Ent(DY)

is called the intrinsic information (value) of feature a. It
penalizes features with a large number of distinct values,
favoring simpler splits.

Gain ratio is biased towards features with fewer possible values.

O The C4.5 algorithm [Quinlan, 1993] uses a heuristic
method : selecting the feature with the highest gain ratio
from the set of candidate features with an mformatlon :
gain above the average.

Split Selection: Gini Index

0 The Gini value of data set D is defined as

V| V| the probability of incorrectly
Gini(D e = 1 — classifying a randomly chosen
;% o Zpk sample if it is randomly labeled
according to the class distribution.

The lower the Gini(D), the higher the purity of data set D.

O The Gini index (impurity) of feature a is defined as
Gini index(D, a) = 3V_, 2 1Gini(D?)

v=1 |D|
O We select the feature with the lowest Gini index as the
splitting feature
a, = argmin Gini_index(D, a)
acA
O CART [Breiman et al., 1984] employs Gini index for
selecting the splitting feature.

Can you provide an example of how Gini impurity is calculated?

ChatGPT Poe

Certainly! Let's consider a simple example where we have a dataset with 10 elements and
two classes: Class A and Class B. Here's the distribution of the classes within the dataset:

Class A: 6 elements
Class B: 4 elements

To calculate the Gini impurity, we follow these steps:

1. Calculate the probability of each class label:

¢ Probability of Class A: 6/10 = 0.6
¢ Probability of Class B: 4/10 = 0.4

2. Calculate the Gini impurity using the formula:
Gini impurity =1 - (p1°2 + p2"2)

Gini impurity =1 - (0.672 + 0.4"2)
Gini impurity =1 - (0.36 + 0.16)
Gini impurity =1 - 0.52

Gini impurity = 0.48

So, in this example, the Gini impurity of the dataset is 0.48. This value indicates the impurity
or disorder within the dataset, with a higher value representing a less pure distribution of
classes.

Note that the Gini impurity can also be calculated at each internal node of a decision tree to
determine the impurity of the subsets created by different splits. The split with the lowest
Gini impurity is typically chosen as it leads to more homogeneous child nodes and better
separation of classes.

Regression tree?

Hint:
0 standard deviation is used as the metric
O leaf value typically set to the mean value

Machine Learning Spring Semester

26

SU

information gain in regression tree

In a regression tree, the goal is to minimize the variance of the target variable within each

leaf node. The information gain for a split in a regression tree is given by:

Niest

IG = Var(parent) — N

Nri 0
Var(left) — TghtVar('rzght)

where $Var(parent)$ is the variance of the target variable in the parent node before the
split, N is the total number of observations in the parent node, N_{left} and
N_{right} are the number of observations in the left and right child nodes resulting from
the split, and $Var(left)$ and $Var(right)$ are the variances of the target variable in the

left and right child nodes, respectively.

This formula calculates the reduction in variance between the parent node and the two
child nodes resulting from the split. The split that maximizes the information gain is

selected as the best split for the tree.

The information gain is a commonly used criterion for selecting the best split in decision

trees, and it can also be applied in other types of trees, including regression trees.

Machine Learning Spring Semester

27

‘ Outline

= Pruning

Machine Learning

Spring Semester

28

Pruning

Why pruning?
0 Pruning is the primary strategy of decision tree learning
algorithms to deal with overfitting.

o If there are too many branches, then the learner may be
misled by the peculiarities of the training samples and
incorrectly consider them as the underlying truth.

General Pruning Strategies

Q pre-pruning

QO post-pruning

How to evaluate generalization ability after pruning?

o We can use the hold-out method to reserve part of the data
as a validation set for performance evaluation.

Machine Learning Spring Semester

29

‘ Pruning

» Data Set

—

1D color root sound texture umbilicus surface ripe
1 green curly muffled clear hollow hard true
2 dark curly dull clear hollow hard true
3 dark curly muffled clear hollow hard true
Tralnlng 6 green slightly curly muffled clear slightly hollow soft true
— 7 dark slightly curly muffled slightly blurry slightly hollow soft true
Set 10 green straight crisp clear flat soft false
14 light slightly curly dull slightly blurry hollow hard false
15 dark slightly curly muffled clear slightly hollow soft false
16 light curly muffled blurry flat hard false
17 green curly dull slightly blurry slightly hollow hard false
1D color root sound texture umbilicus surface ripe
4 green curly dull clear hollow hard true
. . 5 light curly muffled clear hollow hard true
Valldatlon | 8 dark slightly curly muffled clear slightly hollow hard true
S et 9 dark slightly curly dull slightly blurry slightly hollow hard false
11 light straight crisp blurry flat hard false
12 light curly muffled blurry flat soft false
13 green slightly curly muffled slightly blurry hollow hard false
Machine Learning Spring Semester 30

‘ Pruning

» The Unpruned Decision Tree

1
?umbilicus=?]

slightly hollow

hollow

slightly blurry clear blurry

G G o>

Machine Learning Spring Semester

31

Pruning: Pre-pruning

Pre-pruning decides by comparing the
generalization abilities before and after splitting.

o If the validation accuracy decreases after pruning, the
splitting is accepted.
0 Otherwise, the splitting is rejected.

When no splitting is performed, this node is
marked as a leaf node and its label is set to the
majority class.

Machine Learning Spring Semester 32

Pruning: Pre-pruning

ID color root sound texture umbilicus surface ripe

4 green curly dull clear hollow hard true

. . 5 light curly muffled clear hollow hard true
Validation 8 dark slightly curly muffled clear slightly hollow hard true
Set 9 dark slightly curly dull slightly blurry slightly hollow hard false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

validation accuracy

1 «umbilicus—=7» before splitting: 42.9%
@mbﬂicus=?] ¢ after splitting: 71.4%

decision by pre-pruning: split

Node @ : When no splitting is performed, this node is
marked as a leaf node and its label is set to the majority class
(i.e., ripe). In validation set, {4,5,8}are correctly classified.
Then the validation accuracy is

2 % 100% = 42.9%

Machine Learning Spring Semester

Pruning: Pre-pruning

ID color root sound texture umbilicus surface ripe
4 green curly dull clear hollow hard true
. . 5 light curly muffled clear hollow hard true
Validation 8 dark slightly curly muffled clear slightly hollow hard true
Set 9 dark slightly curly dull slightly blurry slightly hollow hard false
11 light straight crisp blurry flat hard false
12 light curly muffled blurry flat soft false
13 green slightly curly muffled slightly blurry hollow hard false
validation accuracy
ST 0

1 «umbilicus—=7> before spilttmg. 42.9%

s after splitting: 71.4%

umbilicus="7] D . DUTING. /2470

decision by pre-pruning: split
hollow slightly (hollow flat

; ripe) (ripe) (unripe)

Node @ : After splitting, the samples are placed into 3 child
nodes. We mark these 3 nodes as leaf nodes and set the labels
to the majority classes. Then the validation accuracy is

% x 100% = 71.4%

Machine Learning Spring Semester

34

‘ Pruning: Pre-pruning

Validation
Set

hollow

ID color root sound texture umbilicus surface ripe
4 green curly dull clear hollow hard true
5 light curly muffled clear hollow hard true
8 dark slightly curly muffled clear slightly hollow hard true
9 dark slightly curly dull slightly blurry slightly hollow hard false
11 light straight crisp blurry flat hard false
12 light curly muffled blurry flat soft false
13 green slightly curly muffled slightly blurry hollow hard false

umbilicus="?

(—

slightly hollow

% ripe)

validation accuracy

before splitting
after splitting
decision by pre-pruning

“umbilicus="?"

flat

™

validation accuracy

“color="7"

before splitting: 71.4%

after splitting: 57.1%

decision by pre-pruning

- don’t split

“root=7"

decision by pre-pruning

validation accuracy

before splitting: 71.4%
after splitting: 71.4%

:42.9%
:71.4%
- split

The pre-pruning strategy stops
splitting node (3)and node 2) .
For node(), no splitting is
needed since all samples
belong to the same class.
Finally, we obtain a decision
tree with only one splitting.
Such a decision tree is called a
decision stump.

- don’t split

Machine Learning

Spring Semester

35

Pruning: Pre-pruning

Advantage
o Reduce the risk of overfitting

o Reduce the computational cost of training and testing

Disadvantage

o Risk of underfitting: Although some branches are
prevented by pre-pruning due to little or even negative
improvement on generalization ability, it is still
possible that their subsequent splits can lead to
significant improvement. These branches are pruned
due to the greedy nature of pre-pruning, and it may
introduce the risk of underfitting.

Machine Learning Spring Semester

Pruning: Post-pruning

O Post-pruning allows a decision tree to grow into a complete tree.

Then it takes a bottom-up strategy to examine every non-leaf node
in the completely grown decision tree.

1
?umbilicus=?]

hollow flat
slightly hollow

The validation
accuracy of this

decision tree is
42.9%

straight

Machine Learning Spring Semester

37

‘ Pruning: Post-pruning

» Node®is the first one examined by post-pruning.

1
?umbilicus=?]

hollow flat

slightly hollow
2
color="7
green dark light

slightly blurry

\ validation accuracy
der N before pruning: 42.9%
unripe @

after pruning: 57.1%
decision: pruning

Machine Learning Spring Semester

‘ Pruning: Post-pruning

» Node®is the first one examined by post-pruning.

1
CPumb.ﬂicus=? J

hollow flat
slightly hollow
2 3

green dar light slightly curly curly

Machine Learning Spring Semester 39

‘ Pruning: Post-pruning

= Next, post-pruning examines node ©®.

1
9umbilicus=?]

hollow flat
slightly hollow

2

color="7

curly

validation accuracy
before pruning: 57.1%
after pruning: 57.1%
decision: no pruning

green dark light

green

Machine Learning Spring Semester 40

‘ Pruning: Post-pruning

= Next, post-pruning examines node ®.

1
CBumbilicus=?‘]

hollow flat
slightly hollow

2

color="7

green dar light

curly

Machine Learning Spring Semester

41

‘ Pruning: Post-pruning

» Then, post-pruning examines node @.

1
9umbilicus=?]

hollow flat
slightly hollow

color="7

curly

validation accuracy
before pruning: 57.1%
after pruning: 71.4%
decision: pruning

Machine Learning Spring Semester

42

‘ Pruning: Post-pruning

» Post-pruning examines node@and node @ similarly.
validation accuracy
before pruning: 71.4%
1
umbilicus—7]]/ after pruning: 42.9%
hollow fat decision: no pruning

slightly hollow

validation accuracy
before pruning: 71.4%
after pruning: 71.4%
decision: no pruning

Machine Learning Spring Semester 43

‘ Pruning: Post-pruning

» Finally, the post-pruning decision tree is

|
<Pumbilicus=?’]

Machine Learning Spring Semester

44

Pruning: Post-pruning

Advantage

0 Post-pruning keeps more branches than pre-
pruning. In general, post-pruning is less prone to
underfitting and leads to better generalization
ability compared to pre-pruning.

Disadvantage

0 The training time of post-pruning is much longer
since it takes a bottom-up strategy to examine
every non-leaf node in a completely grown decision

{ree.

Machine Learning Spring Semester 45

‘ Outline

» Continuous and Missing Values

Machine Learning Spring Semester

Continuous Values

O Discretization Strategy (Bi-partition)

® Given a data set D and a continuous feature a, suppose
nvalues of @ are observed in D, and we sort these values in
ascending order, denoted bya',a?, ...a” With a split point
t, D is partitioned into the subsets D, and D;, where D,
includes the samples with the value of a not greater than
t, and D, includes the samples with the value of a greater
than . There are n — 1 elements in the following set of
candidate split points:

Ta:{ai+a”1\1gz’§n—1}

where the midpoint a*g is used as the candidate split point
for the interval [a*,a' ™).

Continuous Values

O Discretization Strategy (Bi-partition)

® The split points are examined in the same way as discrete
features, and the optimal split points are selected for
splitting nodes.

Gain(D, a) = max Gain(D, a, t)

teTy
D

D
where Gain(D,qa,1) is the information gain of bi-partitioning

D by t, and the split point with the largest Gain(D,a,t)is
selected.

= max Ent(D) — Z Ent(D?>

tely,

Continuous Values

A Concrete Example

ID color root sound texture umbilicus surface density sugar ripe
1 green curly muffled clear hollow hard 0.697 0.460 true
2 dark curly dull clear hollow hard 0.774 0.376 true
3 dark curly muffied clear hollow hard 0.634 0.264 true
4 green curly dull clear hollow hard 0.608 0.318 true
5 light curly muffied clear hollow hard 0.556 0.215 true
6 green slightly curly muffled clear slightly hollow soft 0.403 0.237 true
7 dark slightly curly muffled slightly blurry slightly hollow soft 0.481 0.149 true
8 dark slightly curly muffled clear slightly hollow hard 0.437 0.211 true
9 dark slightly curly dull slightly blurry slightly hollow hard 0.666 0.091 false
10 green straight crisp clear flat soft 0.243 0.267 false
11 light straight crisp blurry flat hard 0.245 0.057 false
12 light curly muffled blurry flat soft 0.343 0.099 false
13 green slightly curly muffled slightly blurry hollow hard 0.639 0.161 false
14 light slightly curly dull slightly blurry hollow hard 0.657 0.198 false
15 dark slightly curly muffled clear slightly hollow soft 0.360 0.370 false
16 light curly muffied blurry flat hard 0.593 0.042 false
17 green curly dull slightly blurry slightly hollow hard 0.719 0.103 false

For the feature density,

its candidate split point

set includes 16 values:

Thensity = {0.244,0.294, 0.351,
0.381,0.420, 0.459,0.518, 0.574,
0.600, 0.621, 0.636, 0.648, 0.661,
0.681,0.708,0.746}

The information gain of

density is 0.262, and

the corresponding split

point is 0.381

Unlike discrete features, a continuous feature can be used as
a splitting feature more than once in a decision sequence.

Optimal splits for continuous
attributes

0000
00000000
X >

J

NcAfes

o

Optimal splits for continuous
attributes

B Moving split point along the empty space between two
observed values has no effect on information gain or
empirical loss; so just use midpoint

-- 9 00-00--0--00----0000--- X

TT

B Moreover, only splits between examples from different
classes can be optimal for information gain or
empirical loss reduction

-- 9 00-00--0--00----0000--- X

‘ Missing Values

= In practice, data is often incomplete, that is, some feature
values are missing in some samples.

= Can we simply discard the incomplete samples?

It is a huge waste of data.

» Learning from incomplete samples raises two problems:

Q1: how to choose the splitting features when there
are missing values

Q2: how to split a sample with the splitting feature
value missing?

Machine Learning Spring Semester

52

Missing Values

O Given a training set D and a feature a, let D be the
subset of samples in D that have values of a, D“ denote
the subset of samples in D taking the value a’, D,
denote the subset of samples in D belonging to the kth
class. We assign a weight w, to each sample x, and
define:

® the proportion of samples without missing values
_ ZCIZED Wy
/O o ZxED Wy

® the proportion of the kth class in all samples without
missing values

~ ZCEGDk Wy
= < k<
o= B (1<k<)

® the proportion of samples taking the feature value a" in all
samples without missing values

~ erﬁvwx
To = 2ipeh Wa (1 S v S V)

Missing Values

O For Q1, with the above definitions, we extend the
information gain to

Gain(D, a) = p x Gain(D, a)

= px (Ent(D) i (D)

where
Y

Ent(D Zpk logs pi
O For Q2,

® when the value of a is known, we place the sample @ into
the corresponding child node without changing its weight w,.

® when the value of a is unknown, we place the sample x into
all child nodes, and set its weight in the child node of value
a’ to 7, - w, In other words, we place the same sample into
different child nodes with different probabilities.

Missing Values

A Concrete Example

ID color root sound texture umbilicus surface ripe
1 - curly muffled clear hollow hard true
2 dark curly dull clear hollow - true
3 dark curly - clear hollow hard true
4 green curly dull clear hollow hard true
5 curly muffled clear hollow hard true
6 green slightly curly muffled clear - soft true
7 dark slightly curly muffled slightly blurry slightly hollow soft true
8 dark slightly curly muffled - slightly hollow hard true
9 dark - dull slightly blurry slightly hollow hard false
10 green straight crisp - flat soft false
11 light straight crisp blurry flat false
12 light curly - blurry flat soft false
13 - slightly curly muffled slightly blurry hollow hard false
14 light slightly curly dull slightly blurry hollow hard false
15 dark slightly curly muffled clear - soft false
16 light curly muffled blurry flat hard false
17 green dull slightly blurry slightly hollow hard false

~

Ent(D) =

® In the beginning, the

root node includes all
of the 17 samples

in D, and all samples
have the weight of 1.

® Taking color as an

example, the set of
samples without
missing values of this
feature, denoted by
D, includes 14
samples. The entropy
of D is calculated as

2
- Zﬁk loga pr = — (15 1oga 5 + = loga =) = 0.985
k=1

Missing Values

O Let DY, D2 and D3 be the subsets of samples with color =
green, color =dark, and color = light, respectively. Then,

we have
But(D') = —(210gs? + 2log,2) = 1.000 Ent(D?) = —(#logs? + 2loga?) = 0.918
Ent(D%) = —(§log:? + 4 logs4) = 0.000
O The information gain of color for subset D is

Gain(D, color) = Ent(D Z 7, Ent(D

4 6 4
— IRE _ _) .
= 0.985 (14 x 1.000 + 1 x 0.918 4 1 X 0.000)

= 0.306.
O The information gain of color for data set D is

~ 14
Gain(D, color) = p x Gain(D, color) = 7 X 0.306 = 0.252.

‘ Missing Values

= Similarly, we have

Gain(D, color) = 0.252; Gain(D,root) = 0.171;
Gain(D, sound) = 0.252; | Gain(D, texture) = 0.424; |
Gain(D, umbilicus) = 0.289; Gain(D, texture) = 0.006.
D color oot sound vexture umbilicus tipe

[| clear
[| slightly blurry
|| blurry

The weights of these samples (i.e., 1)
remain unchanged in the child nodes.

- Missing. The sample is placed
into all of the three child
nodes with different weights:

7 5

7 5 3
75> 15 and {¢.

7 dark slightly curly muffled slightly blurry slightly hollow

dull slightly blurry slightly hollow

13 = slightly curly muffled slightly blurry hollow
14 light slightly curly dull slightly blurry hollow

17 green - dull slightly blurry slightly hollow

true

false

false

false

Machine Learning

Spring Semester

57

‘ Missing Values

| Any OtheI‘ appI‘OaChe S? Imputation of missing values

>>> import numpy as np

>>> from sklearn.impute import SimpleImputer

>>> imp = SimpleImputer(missing_values=np.nan, strategy='mean')
>>> imp.fit([[1, 2], [np.nan, 31, [7, 611])

SimpleImputer()

>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]

>>> print(imp.transform(X))

\"

[[4. 22]
[6. 3.666...1]
[7. 6. 11

strategy : str, default="mean’
The imputation strategy.

¢ [f "mean”, then replace missing values using the mean along each column. Can only be used with
numeric data.

¢ [f "median”, then replace missing values using the median along each column. Can only be used with
numeric data.

e |f "most_frequent”, then replace missing using the most frequent value along each column. Can be used
with strings or numeric data. If there is more than one such value, only the smallest is returned.

e |f “constant”, then replace missing values with fill_value. Can be used with strings or numeric data.

Machine Learning Spring Semester

‘ Outline

= Multivariate Decision Trees

Machine Learning Spring Semester

59

‘ Multivariate Decision Trees

» For decision trees, the decision boundaries are axis-parallel.

= Multivariate Decision Tree

* Each non-leaf node is no longer
a test for a particular feature but
a linear combination of features.

¥

 Each non-leaf node is a linear
classifier in the form of
> wia; = t, wherew; is the weight
of feature a;, and w; and ¢ are
learned from the data set and
feature set of the node.

60

Machine Learning Spring Semester

‘ Multivariate Decision Trees

m Decision Tree

[sugar<0.1267 }

true kalse + ripe
@ [density<0.381?] 0.6 || — unripe
true false » c“a‘
gﬂ 04 F
@ [sugar<0.2057 2 - +
- |+
true false 0.2 F + +
+
[density<0.560? J @ -
]] _l
true false 0 0.2 04 0.6

Machine Learning Spring Semester

‘ Multivariate Decision Trees

= Multivariate Decision Trees

[—0.800 X density — 0.044 X sugar —0.313?]

true false
[—0.365 X density + 0.366 X sugar < —0.1587 } @ A

true false + riPe
0.6 || — unripe
unripe -
Comrre> <> = |)
0 04 -
m —
- |+
02 F ++
0 0.2 04 0.6 08 >
density
Machine Learning Spring Semester 62

Take Home Message

Splitting Features Selection
Pruning (Pre-pruning and Post-pruning)
Continuous and Missing Values

Multivariate Decision Tree

Machine Learning Spring Semester

‘Software Packages

m Scikit-learn
https://scikit-
learn.org/stable/modules/tree.html

= ID3, C4.5, C5.0
http://www.rulequest.com/Personal/

= J48
http://www.cs.waikato.ac.nz/ml/weka/

Machine Learning Spring Semester

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cs.waikato.ac.nz/ml/weka/

feature
importance

eee 1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

cpdef compute_feature_importances(self, normalize=True):
""n"Computes the importance of each feature (aka variable)."""
cdef Nodex left
cdef Node*x right
cdef Nodex nodes = self.nodes
cdef Nodex node = nodes
cdef Nodex end_node = node + self.node_count

cdef double normalizer = 0.

cdef np.ndarrayl[np.floaté4_t, ndim=1] importances
importances = np.zeros((self.n_features,))
cdef DOUBLE_t* importance_data = <DOUBLE_t*>importances.data

with nogil:
while node != end_node:
if node.left_child != _TREE_LEAF:
... and node.right_child != _TREE_LEAF:
left = &nodes[node.left_child]
right = &nodes[node.right_child]

importance_datalnode.feature] += (
node.weighted_n_node_samples * node.impurity -
left.weighted_n_node_samples * left.impurity -
right.weighted_n_node_samples * right.impurity)
node += 1

importances /= nodes[@].weighted_n_node_samples

if normalize:
normalizer = np.sum(importances)

if normalizer > 0.0:
Avoid dividing by zero (e.g., when root is pure)

importances /= normalizer

return importances

Machine Learning

Spring Semester

