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Chapter 13

Ensemble Learning
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Ensemble methods
Machine	learning	competition	with	a	$1	million	prize	
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Bias-Variance Decomposition
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Fighting the bias-variance tradeoff

•	Simple	(a.k.a.	weak)	learners	are	good
– e.g.,	naïve	Bayes,	logistic	regression,	decision	stumps	(or	

shallow	decision	trees)	
– Low	variance,	don’t	usually	overfit

•	Simple	(a.k.a.	weak)	learners	are	bad
– High	bias,	can’t	solve	hard	learning	problems

•	Can	we	make	weak	learners	always	good???
– No!!!	
– But	often	yes…
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Ensemble Methods
• Instead	of	learning	a	single	(weak)	classifier,	learn	manyweak	

classifiers	that	are	good	at	different	parts	of	the input	space

• Output	class: (Weighted)	vote	of	each	classifier
– Classifiers	that	are	most	“sure”	will	vote	with	more conviction
– Classifiers	will	be	most	“sure”	about	a	particular	part	of	the	space
– On	average,	do	better	than	single	classifier!

• But	how	do	you	???
– force	classifiers	to	learn	about	different	parts	of	the	input	space?
– weigh	the	votes	of	different	classifiers?	

only	one	training	set
where	do	multiple	models	come	from?	
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Ensemble Method 1
Bagging!!!

• Variance:	reduced,	since	we’re	averaging	over	independent
samples

For	low	bias	but	high	variance	models

• Bias:	unchanged,	since	the	averaged	prediction	has	the	
same expectation
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Ensemble Method 2

Sequentially	generate	weak	learners	to	handle	wrongly	classified	
samples,	hence	reduce	the	bias. Boosting!!!

For	high	bias	but	low	variance	models



Ensemble Learning
p Individual	and	Ensemble

p Bagging	and	Random	Forest

p Boosting
l Adaboost

p Combination	Strategies
l Averaging
l Voting
l Combining	by	Learning

p Diversity
l Error-Ambiguity	Decomposition
l Diversity	Measures
l Diversity	Generation



Individual and Ensemble

p Ensemble learning trains and combines multiple learners 
to solve a learning problem.



Individual and Ensemble

p Taking binary classification as an example, suppose 
three classifiers are applied to three testing samples, 
where √ indicate the correct classifications, × indicate the 
incorrect classifications. The classification of ensemble 
learning is made by voting.

p Individual learners should be “accurate and diverse”.



Individual and Ensemble

p Consider binary classification, the error rate of each base 
learner is

p Suppose ensemble learning combines the 𝑇 base learners by 
voting, then the ensemble will make an correct classification if 
more than half of the base learners are correct:



Individual and Ensemble

p Assuming the error rates of base learners are 
independent, then, from Hoeffding’s inequality, the error 
rate of the ensemble is

p The above equation shows that as the number of base 
learners in the ensemble increases, the error rate 
decreases exponentially and eventually approaches zero.



Individual and Ensemble

p The above analysis made a critical assumption that the 
error rates of base learners are independent.

p This assumption is invalid in practice since the learners 
are trained to solve the same problem and thus cannot be 
independent.

p In fact, accuracy and diversity are two conflicted 
properties of individual learners.

p The generation and combination of “accurate and diverse” 
individual learners are the fundamental issues in 
ensemble learning.



Ensemble Learning
p Individual and Ensemble
p Bagging and Random Forest
p Boosting

l Adaboost
p Combination Strategies

l Averaging
l Voting
l Combining by Learning

p Diversity
l Error-Ambiguity Decomposition
l Diversity Measures
l Diversity Generation



Bagging and Random Forest



Bagging
p Bagging = Bootstrap AGGregatING

The bootstrap is one of the most important ideas in all of statistics!



Bagging



Bagging



Random Forests

p Random Forests = bagged decision trees, with one 
extra trick to decorrelate the predictions
Ø When choosing each node of the decision tree, 

choose a random set of input features, and only 
consider splits on those features

p Random forests are probably the best black-box 
machine learning algorithm — they often work well 
with no tuning whatsoever.
Ø one of the most widely used algorithms in Kaggle 

competitions



Bagging Summary

p Bagging reduces overfitting by averaging predictions.
p Used in most competition winners

Ø Even if a single model is great, a small ensemble usually 
helps.

p Limitations:
Ø Does not reduce bias in case of squared error.
Ø There is still correlation between classifiers.

Ø Random forest solution: Add more randomness.

Ø Naive mixture (all members weighted equally).

p Boosting, up next, can be viewed as an approach to 
weighted ensembling that strongly decorrelates ensemble 
members.



Ensemble Learning
p Individual and Ensemble
p Bagging and Random Forest
p Boosting
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p Diversity
l Error-Ambiguity Decomposition
l Diversity Measures
l Diversity Generation



Boosting

Idea: given a weak learner, run it multiple times on weighted 
training set, then let the learned classifiers vote

p The learners are generated sequentially
p Adjust the distribution of the training samples





Boosting - AdaBoost
pWeight each training example by how incorrectly it 

was classified
pA strength for each hypothesis 

normalization factor

initially the uniform distribution 











Training error goes to zero



Boosting - AdaBoost

p Linear combination of base learners

p AdaBoost can then be viewed as optimizing the exponential loss:

p WHY? Training error of final classifier is bounded by:





Boosting - AdaBoost

p If 𝐻(𝑥) minimizes the exponential loss, then the partial 
derivative with respect to 𝐻(𝑥) is zero:

𝑠𝑖𝑔𝑛(𝐻(𝑥)) achieves the Bayes optimal error rate. Hence 
the exponential loss function is a consistent surrogate 
function of the original 0/1 loss function.



Boosting - AdaBoost
p Adjust the sample distribution based on𝐻!"# such that 

the base learner ℎ! in the next round can correct some 
mistakes made by 𝐻!"#.

p Use Taylor expansion to approximate: 



Boosting - AdaBoost

p Hence, the ideal classifier is

p where is a constant. Let 𝐷𝑡 denote a 
distribution



Boosting - AdaBoost
p According to the definition of mathematical expectation, 

the ideal classifier is equivalent to

p Since 𝑓 𝑥 , ℎ 𝑥 ∈ {−1,+1}, we have



Boosting - AdaBoost

p The update rule of the sample distribution is

p The ideal classifier is



Boosting - Notice

p In each round, check whether the current base 
learner is better than random guessing.

p To learn from specified sample distributions
l re-weighting
l re-sampling



Boosting - AdaBoost
p The base classifier ℎ! is generated from the distribution 
𝐷!. Its weight 𝛼! is estimated by letting 𝛼!ℎ! minimize the 
exponential loss function:

p Set the derivative of the exponential loss function to 0
where



Boosting – AdaBoost Experiment

The first round:

weak classifiers are 
decision stumps

(decision tree with a 
single split)



Boosting – AdaBoost Experiment

The second round:



Boosting – AdaBoost Experiment

The third round:



Boosting – AdaBoost Experiment

The final round:



Logistic regression and Boosting

p Logistic regression equivalent to minimizing log loss

p Boosting minimizes similar loss function!!

1
𝑚

Both smooth approximations of 0/1 loss!



What you need to know about 
Boosting
p Combine weak classifiers to obtain very strong classifier      

– Weak classifier – slightly better than random on   
training data 

– Resulting very strong classifier – can eventually 
provide zero training error 

p AdaBoost algorithm
p Boosting v. Logistic Regression 

– Similar loss functions 
– Single optimization (LR) v. Incrementally improving 

classification (B)
p Most popular application of Boosting:

– Boosted decision stumps! 
– Very simple to implement, very effective classifier
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Averaging

Numerical output

p Simple averaging

p Weighted averaging



Averaging
p Simple averaging is a special case of weighted averaging.

p Weighted averaging has been widely used since the 1950s.

p Other combination methods can all be viewed as its special 
cases or variants of weighted averaging.

p Weighted averaging can be regarded as a fundamental 
motivation of ensemble learning studies.

p Weighted averaging is not necessarily better than simple 
averaging



Voting
For classification

p Majority voting

p Plurality voting

p Weighted voting



p Confidence values                probabilities

Voting

p 1) Class label

p 2) Class probability

hard voting

soft voting

calibration

p If different types of base learners are used, the class 
probabilities can be converted into class labels before 
voting.

p Two common value types for the output of ℎ𝑖



Stacking

Zhi-Hua Zhou. Deep Forest: Towards an Alternative to Deep Neural Networks. IJCAI'17
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Error-Ambiguity Decomposition

p The ambiguity of the learner ℎ$ is defined as

p The ambiguity of the ensemble is defined as



Error-Ambiguity Decomposition

p The ambiguity term represents the degree of 
disagreement among individual learners on the sample 𝒙, 
which reflects the level of diversity in some sense. 

p The squared errors of the individual learner ℎ$ and the 
ensemble 𝐻 are, respectively,



Error-Ambiguity Decomposition

p Let denote the weighted 
average error of individual learners, then, we have

p Let 𝑝(𝒙) denote the probability density of the sample 𝒙, 
for all samples we have



Error-Ambiguity Decomposition

p The generalization error and the ambiguity term of the 
learner ℎ$ on all samples are, respectively,

p The generalization error of the ensemble is

p Let denote the weighted average error of 
individual learners, and                     denote the 
weighted average ambiguity of individual learners. Then



Error-Ambiguity Decomposition

p This elegant equation clearly shows that the 
generalization ability of an ensemble depends on the 
accuracy and diversity of individual learners. The above 
analysis is known as the error-ambiguity decomposition.

p Why can’t we optimize 2𝐸 − 𝐴̅ directly?
Ø Direct optimization of *𝐸 − 𝐴̅ is hard in practice:

l Both terms are defined in the entire sample space;
l 𝐴̅ is not a diversity measure that is directly operable;
l The above derivation process is only applicable to regression 

and is difficult to extend to classification.



p The contingency table of the classifiers ℎ$ and ℎ% for binary 
classification is

Diversity Measures

p Diversity measures are for measuring the diversity of 
individual learners in an ensemble.



p Some representative diversity measures:

l Disagreement Measure

l Correlation Coefficient

Diversity Measures



p Some representative diversity measures:

l Q-Statistic

l к-Statistic

Diversity Measures



Diversity Measures

p к-error diagrams



Diversity Generation

p How can we enhance diversity?

l Data sample manipulation

l Input feature manipulation

l Output representation manipulation

l Algorithm Parameter Manipulation

l Different diversity generation mechanisms can be used 

together



Data sample manipulation
p Data sample manipulation is often based on sampling 

methods
l Bootstrap sampling used by Bagging
l Sequential sampling used by AdaBoost

p Base learners that are are sensitive to data sample 
manipulation (unstable base learners)
l Such as decision trees and neural networks

p Base learners that are are insensitive to data sample 
manipulation (stable base learners)
l Such as linear learners, SVM, naïve Bayes, and 𝑘-nearest 

neighbors

Data sampling manipulation 
is particularly effective for 

unstable base learners



p Random subspace

Input feature manipulation

𝑑’ randomly selected features
Keeps only the selected features


