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‘ Ensemble methods

Machine learning competition with a $1 million prize
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Bias-Variance Decomposition

@ Recall, we treat predictions y at a query x as a random variable (where
the randomness comes from the choice of dataset), y, is the optimal
deterministic prediction, ¢ is a random target sampled from the true
conditional p(t|x).

E[(y —t)°] = (v« — E[y])® + Var(y) + Var(t)
ot T, T s T N

bias variance Bayes error

@ Bias/variance decomposes the expected loss into three terms:

» bias: how wrong the expected prediction is (corresponds to
underfitting)

» variance: the amount of variability in the predictions (corresponds
to overfitting)

» Bayes error: the inherent unpredictability of the targets
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Fighting the bias-variance tradeott

- Simple (a.k.a. weak) learners are good

- e.g., naive Bayes, logistic regression, decision stumps (or
shallow decision trees)

— Low variance, don’t usually overfit

- Simple (a.k.a. weak) learners are bad
— High bias, can’t solve hard learning problems

 Can we make weak learners always good???
- No!!!
- But often yes...

Model Complexity
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Ensemble Methods

 Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

*  Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

* But howdoyou ???
— force classifiers to learn about different parts of the input space?
— weigh the votes of different classifiers?

only one training set
where do multiple models come from?

Machine Learning Spring Semester



Ensemble Method 1

For low bias but high variance models Bagging!!!

« Bias: unchanged, since the averaged prediction has the
same expectation

— E[yz]

* Variance: reduced, since we're averaging over independent
samples

1 m
Var|y| = Var — Zyz =3 ZVar i) = — Var[yz]
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‘ Ensemble Method 2

For high bias but low variance models

Sequentially generate weak learners to handle wrongly classified

samples, hence reduce the bias. Boosting!!!

R 4 i
R L -y [
INITIAL DATASET Q/ \’ A a NEW SET OF DATA

TREE (priority for cases on which the
previous algorithm was mistaken)

2y
[Ran) o« B —— 5 REPEAT UNTIL IT FEELS GOOD

« ‘a
COLLECT BAD CASES
AGAIN GUESS WHO |S

HERE AGAIN? BOOST‘NG
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Ensemble Learning

O Individual and Ensemble
O Bagging and Random Forest

O Boosting
® Adaboost

O Combination Strategies
® Averaging
® Voting
® Combining by Learning
O Diversity
® Error-Ambiguity Decomposition
® Diversity Measures

® Diversity Generation



Individual and Ensemble

O Ensemble learning trains and combines multiple learners
to solve a learning problem.

[ Individual learner 1

[ Individual learner 2 ]—0[ Combining module ]—> Output

[ Individual learner 7




Individual and Ensemble

O Taking binary classification as an example, suppose
three classifiers are applied to three testing samples,
where v indicate the correct classifications, x indicate the

incorrect classifications. The classification of ensemble
learning is made by voting.

Testing Testing Testing Testing Testing Testing Testing Testing Testing
sample 1 sample 2 sample 3 sample 1 sample 2 sample 3 sample 1 sample 2 sample 3
I, 7 7 X n 7 7 X n 7 X X
h; X v v h, v v X h, X v X
hs v X v h3 v v X h3 X X v
Ensemble Vv Vv v Ensemble Vv Vv X Ensemble X X X
(a) Ensemble helps. (b) Ensemble doesn’t help. (c) Ensemble hurts.

O Individual learners should be “accurate and diverse”.



Individual and Ensemble

O Consider binary classification, the error rate of each base
learner is

P (hi(x) # f (z)) =€

O Suppose ensemble learning combines the T base learners by
voting, then the ensemble will make an correct classification if
more than half of the base learners are correct:

F(x) = sign (Z hz(w))



Individual and Ensemble

O Assuming the error rates of base learners are
independent, then, from Hoeffding’s inequality, the error
rate of the ensemble is

LT/2]
P(F(@)#1@)= Y (,)a-okr

k=0

< exp (—%T (1- 2e)2>

O The above equation shows that as the number of base
learners in the ensemble increases, the error rate
decreases exponentially and eventually approaches zero.



Individual and Ensemble

O The above analysis made a critical assumption that the
error rates of base learners are independent.

O This assumption is invalid in practice since the learners
are trained to solve the same problem and thus cannot be
independent.

O In fact, accuracy and diversity are two conflicted
properties of individual learners.

{4

O The generation and combination of “accurate and diverse
individual learners are the fundamental issues in
ensemble learning.



Ensemble Learning

O
O Bagging and Random Forest

O
[

O
[
[

O
[



Bagging and Random Forest

Machine Learning, 24, 123-140 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Bagging Predictors

LEO BREIMAN leo@stat.berkeley.edu
Statistics Department, University of California, Berkeley, CA 94720

Editor: Ross Quinlan

Abstract. Bagging predictors is a method for generating multiple versions of a predictor and using these to get
an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and
does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of
the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and
regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
The vital element is the instability of the prediction method. If perturbing the learning set can cause significant
changes in the predictor constructed, then bagging can improve accuracy.

Keywords: Aggregation, Bootstrap, Averaging, Combining



Bagging

0 Bagging = Bootstrap AGGregatING

Algorithm 8.2 Bagging.

Input: Training set: D = {(@1,v1), (2, 92), ..., (Tm,ym)}:
Base learning algorithm £;
Number of training rounds 7'
Process:
[: fort=1,2,....,T do
2: ht = £(D,Dyg).
3: end for
Output: H(x) = argmax, .y, Z;Tzl [(he(x) = ).

The bootstrap is one of the most important ideas in all of statistics!
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Random Forests

0 Random Forests = bagged decision trees, with one
extra trick to decorrelate the predictions

» When choosing each node of the decision tree,
choose a random set of input features, and only
consider splits on those features

0 Random forests are probably the best black-box
machine learning algorithm — they often work well
with no tuning whatsoever.

» one of the most widely used algorithms in Kaggle
competitions



Bagging Summary

O Bagging reduces overfitting by averaging predictions.

O Used in most competition winners
» Even if a single model is great, a small ensemble usually
helps.
O Limitations:
» Does not reduce bias in case of squared error.
» There is still correlation between classifiers.
» Random forest solution: Add more randomness.
» Naive mixture (all members weighted equally).
O Boosting, up next, can be viewed as an approach to

weighted ensembling that strongly decorrelates ensemble
members.



Ensemble Learning

O
O

0 Boosting
® Adaboost

O
[
[

O
[



Boosting

Idea: given a weak learner, run it multiple times on
training set, then let the learned classifiers vote

O The learners are generated sequentially
O Adjust the distribution of the training samples

T
{:c — sign(H(z)) | H(x) = Zatht(w) for some a1, ...,ar > 0 and hy,
t—1

where H 1s the weak predictor class (e.g., decision stumps).

weighted

...,hTEH,TZ].}



Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999.
(In Japanese, translation by Naoki Abe.)

A Short Introduction to Boosting

Yoav Freund Robert E. Schapire
AT&T Labs — Research
Shannon Laboratory
180 Park Avenue
Florham Park, NJ 07932 USA
www.research.att.com/~{yoav, schapire}
{yoav, schapire } @research.att.com

Abstract

Boosting is a general method for improving the accuracy of any given learning algorithm.
This short overview paper introduces the boosting algorithm AdaBoost, and explains the un-
derlying theory of boosting, including an explanation of why boosting often does not suffer
from overfitting as well as boosting’s relationship to support-vector machines. Some examples
of recent applications of boosting are also described.



Boosting - AdaBoost

O Weight each training example by how incorrectly it
was classified
A strength for each hypothesis

Input: Training set D = {(x1,y1), (®2,y2), ..., (m,Ym)};
Base learner £;
Number of training rounds 7.
Process:
I: Di(x) = 1/m; » initially the uniform distribution
2: fort=1,2,...,Tdo
3: ht = £(D,Dy);

4: et = Ppp, (ht(x) # f(x));
5: if ¢, > 0.5 then break
6: ot = %ln (12—:’5),
- Dros () = DtZ(az) " exp(—at), %f hi(z) = f(x);

t exp(ar),  if he(x) # f();

_ Di(@) exp(zat f(X)h¢ (X)) . . ]
Zt ’ » hormalization factor

8: end for

Output: F(x) = sign (Zle atht (az)).




¥% 8.1 (AdaBoost) |
WA WNHBRET = {(x, ), (x5, 0,), .00, 00)}» P xeXcRY, ye
Y={-1+1}; $5EIHZ;
HiHl: BREDEEG(X).
(1) WAV SRR I A
1

D, = (Wt Wyst s Wiy) s Wy =—

N

1,2« N

(2) Xm=12,---,M
(a) HAHBES D, B GHIEESES), BIIRAHHR

G, (x): X = {-1,+1}
(b) 5 G, (x) TEVSGEIEE LR KiREFK
e, =P(G,(x)# )= w,I(G,(x)#y) (8.1)
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X} AdaBoost FEAE T {58H :
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Training error goes to zero

Theorem 0.1. Suppose the weak learning assumption holds for all t: each h, is better than random
guessing: for some vy > 0,
€t S 1 / 2 — Y

Then the training error

A

R()l(f) S exp (—2’)/2T) .



Boosting - AdaBoost

0 Linear combination of base learners

T
H(z) =) ahi()
t=1
O AdaBoost can then be viewed as optimizing the exponential loss:

lexp(H | D) = Egnple ! @H )]

O WHY? Training error of final classifier is bounded by:

Ly U(sign(H(z)) # i) < = 37 exp(—yiH(z:))
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Boosting - AdaBoost

lexp(H | D) = Egnple ! @H )]

O If H(x) minimizes the exponential loss, then the partial
derivative with respect to H(x) is zero:

%épzfmgp) = —e "@P(fx) =1 |a) + " @P(f(z) = -1 |2) = 0

1 P(f(@)=1]|a)

2 P(f(x)=-1|=z)

H(x) =

sign(H (x)) = sign (5 In

_ { 1,  P(f(z) =
—1, P(f(w) —

= argmaxP(f(x) =y | )
ye{-1,1}
sign(H(x)) achieves the Bayes optimal error rate. Hence
the exponential loss function is a consistent surrogate
function of the original 0/1 loss function.



Boosting - AdaBoost

O Adjust the sample distribution based on H,_, such that
the base learner h; in the next round can correct some
mistakes made by H,_,.

boxp(Hi—1 + ht | D)

— ]Ea:ND[

= Epple /@ Hi—1(@)+hi(2))]

e~/ @He1(@) g~ f(@)he(@))

O Use Taylor expansion to approximate:

gexp(Ht—l + hy | D) ~ Ep~p

- EmN’D

—e—f(m)Ht—l(w) (1 )@ + f2(m)2h?(w))]

_e—f(m)Ht—l(m) (1 — f(®)h(x) + %)]



Boosting - AdaBoost

O Hence, the ideal classifier is

hi(x) = argmin £eyp (Hi—1 + h | D)
h

= arg min E,.p [e_f(“’)H‘—l(‘”) (1 — f()h(x) + —)]
h

= arg max Ezp -e_f(‘”)H‘—l(“’)f(m)h(m)]
h L

. e—f(@)Hi—1()
- arg’rlnax x~D Egple—f@Hi-1(z)]

f (w)h(w)] :

O where Ewwp[e‘f(‘”)Ht—l(“’)] is a constant. Let D, denote a

distribution ,D(w)e_f(m)Ht_l(w)

Ee~p [e—f(w)Ht—l (:n)]

Dt (m) =



Boosting - AdaBoost

O According to the definition of mathematical expectation,
the ideal classifier is equivalent to

e_f(m)Ht_l(m)
Egple—f@Hi—1(z)] f(x)h(x)

hi(x) = argmax Egzp
h

= argirznax Egxp, [f(z)h(x)] .

O Since f(x),h(x) € {—1,+1}, we have

f@h(@) =1-21(f(@) # h(x))



Boosting - AdaBoost

0 The ideal classifier is

hi(x) = arg ’fnin Eq~p, [I(f(z) # h(z))]

O The update rule of the sample distribution is

D (x) e f(@)Hi()
Egp [ @H(@)]
D (m) e—f(m)Ht—l(w)e—f(m)atht ()
- E, [e‘f(“’)H‘(m)]

Diy1 () =

E.._ [e_f(m)Ht—l(w)]
_ o~ f(@)othe(x) Z2~D
=Di(z) e Egp [/ @H.@)]



Boosting - Notice

O In each round, check whether the current base
learner is better than random guessing.

O To learn from specified sample distributions
® re-weighting
® re-sampling



Boosting - AdaBoost

O The base classifier h; is generated from the distribution
D,. Its weight «;, is estimated by letting a.h, minimize the
exponential loss function:

Cexp (ishy | Dy) = Egp, [e—f(w)atht(w)]
= Eaw, [1(f (@) = he (@) +e1(f (2) # o (2)]
= e % Ppp, (f (x) = by () + €% P, (f (T) # ht (x))

s e_at (1 = Et) + eatet

where € = Pep, (ht(z) # f())
O Set the derivative of the exponential loss function to O

C%exp(atht | Dt)
8(1,5

=—e *(1—¢)+e%eg =0

11 1—€t
o — —1n
g 2 €t




Boosting - AdaBoost Experiment

- +
weak classifiers are + 4
decision stumps o =
(decision tree with a n _
single split) _
@ -+
o G a
The first round: [ =




Boosting — AdaBoost Experiment

The second round:

€5=0.21



Boosting - AdaBoost Experiment

The third round:

£3=0.14
01,=0.92



Boosting — AdaBoost Experiment

The final round:

+0.92

H_ =s1gn | 0.42 + 0.65
final




Logistic regression and Boosting

O Logistic regression equivalent to minimizing log loss

> In(1 + exp(—y;f(z;)))

1m
m;—1

O Boosting minimizes similar loss function!!

lexp(H | D) = Eqple™/(®H(®)

Both smooth approximations of 0/1 loss!



What you need to know about
Boosting

O Combine weak classifiers to obtain very strong classifier
— Weak classifier - slightly better than random on
training data
— Resulting very strong classifier — can eventually
provide zero training error
O AdaBoost algorithm
[0 Boosting v. Logistic Regression
— Similar loss functions
— Single optimization (LR) v. Incrementally improving
classification (B)
O Most popular application of Boosting:
— Boosted decision stumps!
- Very simple to implement, very effective classifier



Ensemble Learning

O
O

O
[

O Combination Strategies

® Averaging

® \oting

® Combining by Learning
O

O

O

O



Averaging

Numerical output

O Simple averaging



Averaging

O Simple averaging is a special case of weighted averaging.
O Weighted averaging has been widely used since the 1950s.

O Other combination methods can all be viewed as its special
cases or variants of weighted averaging.

O Weighted averaging can be regarded as a fundamental
motivation of ensemble learning studies.

O Weighted averaging is not necessarily better than simple
averaging



Voting

For classification

O Majority voting
H(x) = { if iy (@) > 05350, Xis b (@)

reject, otherwise.

O Plurality voting

H(J:) — Carg max 23;1 hf (z)
J

O Weighted voting



Voting

O Two common value types for the output of h,

O 1) Class label h!(x) € {0,1} hard voting

O 2) Class probability hZ(w) € [0,1]  soft voting

calibration
O Confidence values > probabilities

O If different types of base learners are used, the class
probabilities can be converted into class labels before
voting.



Stacking
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Zhi-Hua Zhou. Deep Forest: Towards an Alternative to Deep Neural Networks. IJCAI'17



Ensemble Learning

O
O

O Diversity
® Error-Ambiguity Decomposition
® Diversity Measures
® Diversity Generation



Error-Ambiguity Decomposition
O The ambiguity of the learner h; is defined as
A(hi | @) = (hi(@) — H())"

O The ambiguity of the ensemble is defined as

Ah|2)=Y"  wiA(hi| )
_ ijl wi(hi (x) — H () )



Error-Ambiguity Decomposition

O The ambiguity term represents the degree of
disagreement among individual learners on the sample x,
which reflects the level of diversity in some sense.

O The squared errors of the individual learner h; and the
ensemble H are, respectively,

E(hi | ) = (f(x) — hi(z))?

E(H |z) = (f(z) — H(z))’



Error-Ambiguity Decomposition

O Let E(h|x) =3, w;-E(h; | ) denote the weighted
average error of individual learners, then, we have

Ah| x) = sz (h; | ) — E(H | )

=FEh|z)-EH |x).

O Let p(x) denote the probability density of the sample x,
for all samples we have

g’wi/A(hz‘ | z)p(x)de = g’wi/E(hi | @)p(x)dz — /E (H | z)p(z)dz



Error-Ambiguity Decomposition

O The generalization error and the ambiguity term of the
learner h; on all samples are, respectively,

= / A

g = / Al oplayis
O The generalization error of the ensemble is

E= / E(H | z)p(e)dz

O Let E = E;-F:l w;E; denote the weighted average error of
individual learners, and 4 = >" , w;A; denote the
weighted average ambiguity of individual learners. Then

E=FE—-A



Error-Ambiguity Decomposition

O This elegant equation clearly shows that the
generalization ability of an ensemble depends on the

accuracy and diversity of individual learners. The above
analysis is known as the error-ambiguity decomposition.

O Why can’t we optimize E — A4 directly?
> Direct optimization of E — A4 is hard in practice:
® Both terms are defined in the entire sample space;
® A is not a diversity measure that is directly operable;

® The above derivation process is only applicable to regression
and is difficult to extend to classification.



Diversity Measures

O Diversity measures are for measuring the diversity of
individual learners in an ensemble.

O The contingency table of the classifiers h; and h; for binary
classification is

h; =41 h; =-1
hj=+1 a
hj =—1 b d

a+b+c+d=m



Diversity Measures

O Some representative diversity measures:

® Disagreement Measure

b+c

dz’sz-j =
m

® Correlation Coefficient

ad — bc

P et (atoctdb1d



Diversity Measures

O Some representative diversity measures:

® (Q-Statistic
ad — be
ij = ad + be |ng| > |Pij|
® K-Statistic
_a+d
o — P1— D2 P m
1 —po Dy — (a+b)(a+c)+ (c+d)(b+ d)

m?2



Diversity Measures

O k-error diagrams

0.40 5 , 7 , 0.40
035 035 R R EERERE ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,, .
8 0 30 S 0 30 ... L ,,,,,,,,,,, S ........... N
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(a) AdaBoost ensemble. (b) Bagging ensemble.



Diversity Generation

O How can we enhance diversity?
® Data sample manipulation
® Input feature manipulation
® Output representation manipulation
® Algorithm Parameter Manipulation

® Different diversity generation mechanisms can be used

together



Data sample manipulation

O Data sample manipulation is often based on sampling
methods

® Bootstrap sampling used by Bagging
® Sequential sampling used by AdaBoost

0 Base learners that are are sensitive to data sample
manipulation (unstable base learners)

® Such as decision trees and neural networks
Data sampling manipulation

is particularly effective for
unstable base learners

0 Base learners that are are insensitive to data sample
manipulation (stable base learners)

® Such as linear learners, SVM, naive Bayes, and k-nearest
neighbors



Input feature manipulation

0 Random subspace

Algorithm 8.4 Random Subspace.

Input: Training set D = {(x1,v1), (®2,v2), ..., (Tm,Ym)}:
Base learning algorithm £;
Number of base learners 7',
Number of features in subspace d’.

Process:

l: fort=1.2.....T do

2: Fi =RS(D,d"); d’ randomly selected features

3: Dy =Mapg, (D): Keeps only the selected features
4: h.t = S(Dt)

5: end for

Output: H(x) = argmax, .y, ST (ht (Mapg, (z)) =y).




