Chapter 14

Clustering
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‘ Clustering

Unsupervised learning
— Requires data, but no labels
— Detect patterns e.g. in
 Group emails or search results
 Customer shopping patterns
* Regions of images
— Useful when don’t know what
you're looking for

— But: can get gibberish
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‘ Clustering examples

Image segmentation
Goal: Break up the image into meaningful or perceptually

similar regions

Machine Learning Spring Semester
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Clustering Problem

O It is mostly studied and widely used in unsupervised learning.

O Goal: partitions the dataset into several disjoint subsets
(clusters).

O Clustering can be used by itself to identify the inherent
structure of data, while it can also serve as a pre-processing
technique for other learning tasks such as classification.
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Clustering Problem

OO0 Formalization

Given dataset D = {x1,z»,- -+ , z,, }containing m unlabeled
samples, where each sample®; = (Zi1;Zi2; -+ ; Tin) is @ n-
dimensional vector. Then, a clustering algorithm partitions
the data setDinto k clusters{Gill =1,2,....k}, where Cr(,,Ci = ¢
and D=, C.

Accordingly, we denote ), € {1,2,--- ,k} as the cluster label of
sample Z; (i.e., z; € Cy,;). Then the clustering result can be
represented as a cluster label vector A = {A; \s; -+ ; A\t with
m elements.
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Performance Measure

O Performance measure for clustering are also called validity
indices.

O Intuitively, we wish things of a kind come together; that is,
samples in the same cluster should be as similar as possible
while samples from different clusters should be as different
as possible. In other words, we seek clusters with high intra-
cluster similarity and low inter-cluster similarity.



Performance Measure

Performance measure for clustering:

® External index

» Comparing the clustering result against a reference
model.

® Internal index

» Evaluating the clustering result without using any
reference model



Performance Measure—-External index

Given a data set D = {z1,2s,...,2,}, SUPPOSE a clustering
algorithm produces the clusters ¢ ={c,,¢,,....¢}, and a

reference model gives the clusters ¢ ={c;.¢;,....C:}.
Accordingly, let Aand X denote the clustering label vectors

of C and C*.

For each pair of samples we define the following four terms
a =SS, 88 = {(ws, 2;)|Ni = Aj, A = Nf i < g}
b=[SD|,SD = {(z;,z;)|\i = A\j, A} # AJ,i < j}

c = |DS|, DS = (i, 75)| i # Aj, A = Aj, 1 < j

d = |DD|,DD = {(z;,3;)|\; # N\j, \f # N5,i < j}



Performance Measure—-External index

O Jaccard Coefficient, JC ( #EE/RZEZL)

O Fowlkes and Mallows Index, FMI

values between
[0,1], the larger
the better

ERENBERY FMI = /-% - 2
U5 Vit b

0 Rand Index, RI ( ZfEZE] )

_ 2(a+d)
RI——m(m—l) /




Performance Measure—-External index

>>> from sklearn.metrics.cluster import fowlkes_mallows_score
>>> fowlkes_mallows_score([0, @, 1, 11, [0, @, 1, 1])
1.0

>>> fowlkes_mallows_score([0, 0, 1, 11, [1, 1, 0, @])
1.0

>>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0



Performance Measure-Internal index

O Given the generated clusters ¢ = {C},(,,...,C}, define the
following four terms:

® The average distance between the samples in cluster C

avg(C) = |0|(|c21|—1) Zl§i§j§|C| dist (i, z;)

® The largest distance between samples in cluster C

diam(C) = mazxi<;<;<|c|dist(z;, x;)
® The distance between two nearest samples in clusters C;and C;

dmzn(c) — minxiECi,aszCj dZSt(x’U CC])

® The distance between the centroids of clusters C; and C;

Aeen (C) = dist(p;, p45)



Performance Measure-Internal index

O Davies-Bouldin Index, DBI

1 avg(C;) + avg(C;) The smaller
DBI =+ - I?Q,f(( deen (Ci, C;) the better.
O Dunn Index, DI
L . . dmin(cia C]) ]
DI = 121@'1% {I?ylé? (max1<l<k diam(C’l)) } The bigger

the better.
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Distance Calculation

The axioms ( 203 ) of distance metric
O Non-negativity (Ffatg) @ dist(x;, z;) > 0
O Identity of indiscernible ( A<e]9o&RE—4/RE ) :
dist(x;,x;) =0 if and only if Z; = ;
O Symmetry (X#FRME) : dist(x;, x;) = dist(x;, x;)
O Subadditivity (E#tE) @ dist(x,, x;) < dist(x;, zx) + dist(xg, ©;)
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Distance Calculation

O A commonly used distance metric:
Minkowski distance: i 1
dist(x;, x;) = (Z |20 — a:jup>

u=1

p=2: Euclidean distance.
p=1: Manhattan distance.

The figure shows unit circles (all points are at the unit distance
from the center) with various values of p

p=22 p=2x
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Prototype Clustering

O Prototype Clustering

Also known as prototype-based clustering, assumes the
clustering structure can be represented by as set of prototypes.

O Algorithm:

Typically, such algorithms start with some initial prototypes, and
then iteratively update and optimize the prototypes.

O Next, we discuss several well-known prototype-based
clustering algorithms.
« K-means Clustering
« Learning Vector Quantization (supervised)

« Mixture-of-Gaussian Clustering



Prototype Clustering - k-means
Clustering

Given a data set D = {z,2,,--- ,2,,}, the k-means algorithm
minimizes the squared error of clusters C = {C,,C,,--- ,C,}:

k
E=3"3 llo - il

1=1 xz€C;
where ; is the mean vector of clusterC,.
Intuitively, E represents the closeness between the mean

vector of a cluster and the samples within that cluster, where
a smaller ' indicates higher intra-cluster similarity.



Prototype Clustering - k-means
Clustering

Given a data set D = {z,2,,--- ,2,,}, the k-means algorithm
minimizes the squared error of clusters C = {C,,C,,--- ,C,}:

k
E:Z Z ||33—Mz|\%

=1 :L’EC@'
where U; is the mean vector of clusterC,.

Intuitively, E represents the closeness between the mean
vector of a cluster and the samples within that cluster, where
a smaller E indicates higher intra-cluster similarity.

O Algorithm (iterative optimization) )
initializes the mean vectors of clusters o
repeat h oo

1. (update) the clusters
2. calculate the mean vectors
until clusters do not change g -




Prototype Clustering - k-means
Clustering

Algorithm 9.1 A-means Clustering.

Number of clusters k.
Process:
I: Randomly select k& samples as the initial mean vectors {feq, o, ..., fg }:
2: repeat
C;=92(1<i<k);
forj=1,2.....mdo

Compute the distance between sample x; and each mean vector p,;(1 < 7 < k):
dji = |lzj — pillo:

Input: Dataset D = {x1,xa,...,xm};

[ I SRS

6: According to the nearest mean vector, decide the cluster label of x;: \; =
argmingc g o gy djis

7: Move x; to the corresponding cluster: Cy, = C\,; U {x; }:

8: end for

0: fori=1,2,....k do

10: Compute the updated mean vectors: p! = Ilel Zme o, T

I11: if pu) # pu; then

12: Update the current mean vector g, to g/

13: else

14: Leave the current mean vector unchanged.

15: end if

16: end for

17: until All mean vectors remain unchanged
Output: Clusters C = {C1,C,...,Cr}.




Properties of k-means algorithm

O Guaranteed to converge in a finite number of
iterations

OO0 Running time per iteration:
® 1. Assign data points to closest cluster center
O(kN)
® 2. Change the cluster center to the average of its
assigned points O(N)



k-means Convergence

Objective
m;nmCmZ _1 Yxec;|X — mil?

1. Fixpy, optimize C:

Step 1 of kmeans

mlnz Z lx — p;|? = mlnz|xl /,txl|

=1 x€C; 5

2. Fix G, optimize u:
min %; Y1 Ywec,lx — wil? |
— Take partial derivative of u; and set to zero, we have ) o 0 o0 0o
) R E—
Hi = 1Ci| x Step 2 of kmeans

Kmeans takes an alternating optimization approach, each step is guaranteed to
decrease the objective — thus guaranteed to converge

[Slide from Alan Fern]



Examplie: k-means for
segmentation

K=2 _ ] Original
. Goal of Segmentation is

to partition an image
into regions each of
which has reasonably
homogenous visual
appearance.




Example: k-means for
segmentation

Original




Example: k-means for
segmentation

K=2 K=3 Original




Prototype Clustering - k-means
Clustering

O An example for k-means algorithm

We take the watermelon data set in the following table as an
example to demonstrate the k-means algorithm. For ease of
discussion, let I; represent the sample with the ID i

ID density sugar ID density sugar ID density sugar
1 0.697 0.460 11 0.245 0.057 21 0.748 0.232
2 0.774 0.376 12 0.343 0.099 22 0.714 0.346
3 0.634 0.264 13 0.639 0.161 23 0.483 0.312
4 0.608 0.318 14 0.657 0.198 24 0.478 0.437
5 0.556 0.215 15 0.360 0.370 25 0.525 0.369
6 0.403 0.237 16 0.593 0.042 26 0.751 0.489
7 0.481 0.149 17 0.719 0.103 27 0.532 0.472
8 0.437 0.211 18 0.359 0.188 28 0.473 0.376
9 0.666 0.091 19 0.339 0.241 29 0.725 0.445
10 0.243 0.267 20 0.282 0.257 30 0.446 0.459




Prototype Clustering - k-means
Clustering

O An example for k-means algorithm

Suppose we set k£ =3, then the algorithm randomly picks
up three samples x¢, T12, 24 as the initial mean vectors,
that is, #1 = (0.403;0.237), pua = (0.343;0.099), 3 = (0.478;0.437)

Then, for the samplez: = (0.697;0.460), its distances to the
three current mean vectors (1, 2, #3are 0.369, 0.506, and

0.220, respectively. Thus z; is assigned to cluster ¢..
Similarly, we evaluate all samples in the data set and find

the following cluster assignments:
Cl — {Qfg,xg),376,557,mg,mg,mlo,wlg,5514,1’17,3718,3319,1'20,3723}
Cy = {x11, %12, T16}

Cs = {x1, %2, T4, T15, T21, T2, T24, T25, T26, T27, T28, £29, T30 }

1! = (0.493;0.207), 1, = (0.394;0.066), 1y = (0.602; 0.396
1 2 3
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Prototype Clustering - k-means

Clustering

O Results of the k-means algorithm
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k-Means Getting Stuck

A local optimum:

<
.. ..O... ‘ [ J
* .. ()
. <
Would be better to have % : . ".°-. ] v -

one cluster here

... and two clusters here



Local Minima

@ The objective J is non-convex (so
coordinate descent on J is not guaranteed

to converge to the global minimum)
A bad local optimum

@ There is nothing to prevent k-means
getting stuck at local minima.

@ We could try many random starting points o *Oe

@ We could try non-local split-and-merge o« o
moves:

» Simultaneously merge two nearby
clusters
» and split a big cluster into two



k-means not able to properly
cluster




Changing the features (distance
function) can help

R




Reconsidering “hard assignments”?

e Clusters may overlap
* Some clusters may be

) GD “wider” than others

e Distances can be
deceiving!



Prototype Clustering - Learning
Vector Quantization

O Learning Vector Quantization, LVQ

Unlike typical clustering algorithm, LVQ assumes data
samples are labeled, and the clustering process is assisted
by supervised information.

Given a data set D = {(z1, 1), (z2,92), -+, (T, ym)} » LVQ @iMS
to learn a set of n-dimensional prototype vectors{pi,p2, - ,p}
where each prototype vector represents one cluster.



Prototype Clustering - Learning
Vector Quantization

Algorithm 9.2 Learning Vector Quantization.

Input: Training set D = {(x1,v1), (x2,y2), ..., (Zm,Ym)}:
Number of prototype vectors g;
Initial labels of prototype vectors {t1,t2,...,t4}:
Learning rate 7.
Process:
I: Initialize a set of prototype vectors {py,ps, ..., Py}
2: repeat
3: Randomly pickup a sample (x;, y;) from the data set D;
4: Compute the distance between x; and p;(1 < i < q): dji = [|[z; — p;]lo:
5: Find the nearest prototype vector p;« for x;, where i* = argmin;c ¢y 5 1 dji:
6: if y; = t;+ then
T: p' =Py + 1 (Tj — Pix):
8: else
9: P =pix —n - (T — Pi+);
10: end if
I1: Update the prototype vector p,« to p’.

12: until The termination condition is met
Output: Prototype vectors {p,pa, ..., Py}




Prototype Clustering - Learning
Vector Quantization

O Clustering results
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Prototype Clustering - Mixture-
of-Gaussian Clustering

Unlike k-means and LVQ, Mixture-of-Gaussian clustering does
not use prototype vectors but probabilistic models to
represent clustering structures.

O Definition of multivariate Gaussian distribution
For a random vector x in an n-dimensional sample space X,

o3 (@—m) S (@—p)

p(r) = —

IR

where 1t is an n-dimensional mean vector andx isan n X n
covariance matrix. We write the probability density function
as p(z|u,X)



Prototype Clustering - Mixture-
of-Gaussian Clustering

0 Definition of the Mixture-of-Gaussian distribution
k
pM<5C) = Zaip(x“%azi)
2=1

which consists of £ mixture components and each
corresponds to a Gaussian distribution. 4; and X; are the
parameters of the ith mixture component, and «o; > 0 are the
corresponding mixture coefficients, where Y;, ;=1



Prototype Clustering - Mixture-
of-Gaussian Clustering

O Suppose that the samples are generated from a Mixture-
of-Gaussian distribution:

Firstly, select the Gaussian mixture components using the
prior distribution defined by oy, as, - - - , ax, where ¢; is the
probability of selecting the :th mixture component

Then, generate samples by sampling from the probability
density functions of the selected mixture components.



Prototype Clustering - Mixture-
of-Gaussian Clustering

O Optimization of the model parameters: maximum the likelihood




Mixture-of-Gaussian Clustering-
Optimization (Continued)

Let:

T
aLL ) m— > iy Vil — ) (x5 — )
Z T m
D je1 Vi

1 m
Lagrange multiplier: ‘ o = - Z’in
j=1



Mixture-of-Gaussian Clustering

Algorithm 9.3 Mixture-of-Gaussian Clustering.

Input: Dataset D = {xzq,xo,...,zm};
Number of Gaussian mixture components k.

Process:
1: Initialize the parameters {(ai, pt;, 2:) | 1 < i < k} of the Mixture-of-Gaussian distribution;
2: repeat
3 forj=1,2,...,mdo

According to (9.30), compute the posterior probabilities that «; is generated by each
Gaussian mixture component, i.e.,vj; =pm(z; =1 | x;)(1 < i < k):
5: end for

6: fori=1,2,...,kdo
i1 Y5i
7: Compute the updated mean vector: p! = 227_,3 ’7 —Z;
9=1 1933
M (@ — ) (s — )T
o= Compute the updated covariance matrix: £/ = Ly=17) (2:3“ M.;)( i—hs) ;
g=1 37
. . ; S A A | m
9: Compute the updated mixture coefficients: o = — > j=174i
10: end for

11: Update the model parameters {(o;, p;, 3;) |1 <i < k}to{(af,p),3!) [1 <i <k}
12: until The termination condition is met

13: C; =2(1 €i < k),

14: forj=1,2,...,m do

15: Determine the cluster label A; of @ ; according to (9.31);
16: Move x; to the corresponding cluster: Cy; = Cy; U {x;}.
17: end for

Output: Clusters C = {C1,Ca,...,Ck}.
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Density Clustering

Applying k-means clustering to following data, it is
hard for prototype-based clustering to find the
density information, which leads to a further results

from expected:
time - 0.043000
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Density Clustering

Density-based clustering: evaluate the connectivity
between samples from the density perspective and

expand the clusters by adding connectable samples.

1.0 4

0.5 1

0.0 1

-0.5 1

—=1.5 -1.0 —-0.5 0.0 0.5 1.0 1.5 2.0



Density Clustering

O Definition of Density Clustering

Density Clustering is also known as density-based clustering.

Assuming the clustering structure can be determined by the
densities of sample distributions.

Typically, density clustering algorithms evaluate the connectivity
between samples from the density perspective and expand the
clusters by adding connectable samples.

Next we introduce DBSCAN (Density-Based Spatial Clustering of
Applications with Noise), which is a representative density
clustering algorithm.



Density Clustering

O DBSCAN algorithm characterizes the density of sample
distributions by a pair of neighborhood parameters

(€, MinPts)
O Define the basic concepts:
® e-neighborhood: forz; € D, its €-neighborhood includes all

samples in D that have a distance tox;no larger thange;

Core object: if the € -neighborhood of zjincludes at least
MinPts samples, thenx;is called a core obJect, @AWSED

Directly density-reachable: x;is said to be directly density-

reachable byz; if z;is a core object and x;is in the €-
neighborhood of x;; (ZEEIX)

Density-reachable: x;is said to be density-reachable by x; if
there exists a sequence of samples p{,ps, -, p,, Where

pP1 = Ti, pp, = T; and p; is directly den5|ty reachable by pi;

Density-connected: x; and Zjare density-connected if there
exists x; such that both are density-reachable by x;



Density Clustering

O An example

Let MinPts = 3:the
dashed circles show

thee -neighborhood
1S a core object

T9 is directly density-
reachable by x4

T3 is density-
reachable by x;

xr3 and z4 density-
connected.

o -



Density Clustering

0 Definition of a cluster

The largest set of density-connected samples derived by
density-reachable relationships.

0 Formalization

Given the neighborhood parameters, a cluster is a non-
empty subset with following properties:

Connectivity:z; € C,z; € C = x;and z; are density-connected
Maximality: =; € C, x, is density-reachable byz; = z; € C

Actually, if & is a core object and let X = {x' €
D | x" is density — reachable by x} denote the set of samples
density-reachable by x, then it can be proved that X is a
cluster that satisfies both the connectivity and the maximality.

(& &= M. &K%E)




DBSCAN

ﬁ]\: #ZIK%D = {wl,m%"'awm};
LIRS (e, MinPts).
T
1 VIR LN RES: Q=0
2: for j=1,2,...,mdo
_ _ 30 WHERER z; ] 4B Ne(z;);
@ Find all core objects 4 if |N.(x;)| > MinPts then
5 WEEA @, MAROTEES: Q = QU z;)
6 end if
7: end for -
: VISR EREKFEE: k=0
MR R VT RIFEALES: T =D
10: while © # @ do
11:  WWXRHARVTEAEEAES: Toaq =T}
12:  PFEHLER—PMEOXNER o € Q, WIEHIAF] Q =< 0 >;
13: I'=T\{o};
14:  while Q # @ do
15: HUHBAS Q FHIEAMFER g;

© 0o

@ Find connected 16: if |[Ne(q)| > MinPts then
component e g AL
P 18: B A FRIER ARG Q;
19: =" 05
20: end if

21: end while

22: k=k+1, FEREEEK Cy =Toa \ T}
230 " Q=G

24: end while

ﬁ&z %tﬂﬁc = {01,02,.. ; ,Ck}




DBSCAN

DBSCAN(DB, distFunc, eps, minPts) {

C:=0 /* Cluster counter x/
for each point P in database DB {
if label(P) # undefined then continue /* Previously processed in inner loop */
Neighbors N := RangeQuery(DB, distFunc, P, eps) /* Find neighbors x/
if |N| < minPts then { /* Density check x/
label(P) := Noise /* Label as Noise x/
continue
}
C:=C+1 /*x next cluster label */
label(P) :=C /* Label initial point x/
SeedSet S := N \ {P} /* Neighbors to expand x/
for each point Q in S { /* Process every seed point Q */
if label(Q) = Noise then label(Q) := C /* Change Noise to border point x/
if label(Q) # undefined then continue /* Previously processed (e.g., border point) *x/
label(Q) :=C /* Label neighbor x/
Neighbors N := RangeQuery(DB, distFunc, Q, eps) /* Find neighbors x/
if |N| = minPts then { /* Density check (if Q is a core point) x/
S:=SUuN /* Add new neighbors to seed set */
}
}
}



Density Clustering
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Hierarchical Clustering

O Hierarchical Clustering aims to create a tree-like
clustering structure by dividing a data set at different

layers. The hierarchy of clusters can be formed by taking
either a bottom-up strategy (Agglomerative , B2£E) or a

top-down strategy (Divisive , 137%3).
O AGNES algorithm (bottom-up Hierarchical Clustering)

starts by considering each sample in the data set as an
initial cluster. Then, in each round, two nearest clusters are
merged as a new cluster, and this process repeats until the
number of clusters meets the pre-specified value.

We define the distances of given clustersC; and C; in
different forms.



Hierarchical Clustering

Minimum distance ( single-linkage , "“ERf&E" ):
dmin(Ci,C;) = min _ dist(z, 2)

:BEC,L',ZECJ'
Maximum distance ( complete-linkage , "&fEiE" ) :
d C;,C;) = max dist(x, =z
maX( v J) mECi,'ZECJ’ ( )

Average distance ( average-linkage , "t9%&#E ")

dan(Ciacj) — il) z)

wEC zeCj



Hierarchical Clustering - dendrogram

O The dendrogram ( &34KE ) of AGNES :
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Hierarchical Clustering - dendrogram

O The dendrogram ( &34KE ) of AGNES :
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Hierarchical Clustering — AGNES

Algorithm

@ Initialize distance
matrix

@ merge clusters and
update distance
matrix

Algorithm 9.5 AGNES.

Input: Dataset D = {xzq,x2,...,zm};
Cluster distance metric function d;
Number of clusters k.

Process:

I: forj=1,2,...,mdo

25 CJ = {.’BJ}.

3: end for

4: fori=1,2,...,mdo

5: forj=i+1,...,mdo

6: M(i,j) = d(Ci,Cj):
7: M(j,i) = M(4, j);
8: end for

9: end for

10: Set the current number of clusters: ¢ = m;
11: whileg > k do

12: Find two clusters C;+ and Cj- that have the shortest distance;
13: Merge C;» and Cj+: Ci» = Ci» U Cj»;

14: forj=5*+1,7*+2,...,qdo

15: Change the index of C; to Cj_1:

16: end for

17: Delete the 7% th row and j7*th column of the distance matrix M
18: forj=1,2,...,9g—1do

19: M(i*,j) = d(C;-,Cj):

20: M(j,7*) = M(i*,7):

21: end for

22: g=q-—1.
23: end while
Output: Clusters C = {C1,Ca,...,Ck}.




Hierarchical Clustering

O AGNES Clustering results
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Input/ Initial setting

» Start with clusters of individual points
and a dlstance/prOX|m|ty matrix

p2 | p3 | p4 |_p5
O p1
O O ”
O O p3
O od
O o5
O |

O O O Distance/Proximity Matrix



Intermediate State

« Merge the two closest clusters (C2 and C5) and update

the distance matrix. c1 |c2 |c3 |ca |cs

C1

c4
C5
Distance/Proximity Matrix
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After Merging

 “How do we update the distance matrix?”

e

C1

cC2U
C5

C3

C4

C1

C2UC5

C3

C4




Example

Apply the Hierarchical Clustering to the following proximity matrix with
single linkage.

1 12 13 14 15

1.00 0.90 0.10 0.65 0.20
0.90 1.00 0.70 0.60 0.50
0.10 0.70 1.00 0.40 0.30
0.65 0.60 0.40 1.00 0.80
0.20 0.50 0.30 0.80 1.00

O B LODN —




Example

Apply the Hierarchical Clustering to the following proximity matrix with
single linkage.




Updating Distance Matrix

Let us assume that we have five samples (a,b,c,d,e) and the following
matrix of pairwise distances between them:

a b c d e
a 0 17 21 31 23
b 17 0 30 34 21
c 21 30 0 28 39
d 31 34 28 0 43
e 23 21 39 43 0

In this example, D;(a,b) = 17 is the lowest value of D, so we cluster
samples a and b.



Updating Distance Matrix

We then proceed to update the initial distance matrix D, into a new
matrix D,, reduced in size by one row and one column. Let's consider
the single-linkage clustering:

= min(D(a,c),D;(b,c))
= min(D;(a,d), D1 (b, d)
= min(D;(a,e),D1(b,e))
(a,b) c
(a,b) 0 21
c 21 0
d 31 28
e 21 39

= min(21, 30)
= min(31,34)
= min(23,21)

d e

31 21

28 39

0 43

43 0

21
31
21

What if we adopt the complete-linkage clustering?



Time complexity

time complexity O(n?) and space complexity O(n)

O O
\ O O © 80 (@)
O
o
° 5 0 °© 5 9 o0
O O 0O o)
o) 0 ©
OO e O Oo 0O
O 0O O O o
o) 0 o
OO O © o X ©
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0
Prim's algorithm Kruskal's algorithm

minimum spanning tree (disjoint-set)



https://en.wikipedia.org/wiki/Minimum_spanning_tree

Summary

O Clustering Problem

O Performance Measure
O Distance Calculation
O Prototype Clustering
O Density Clustering

O Hierarchical Clustering



Recent Progress



‘ DeepCluster

DeepCluster is a novel method for the end-to-end learning of
convnets that works with any standard clustering algorithm.

Classification

-0f
Input Convnet ?)@c\oe‘ - I

—_— / T Pseudo-labels
\ Clustering
1 N
min — min  ||fe(xn) — Cyn||s such that vy, 1 =1.

CceRixk N “— yne{0,1}F

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. “Deep Clustering for
Unsupervised Learning of Visual Features.” Proc. ECCV (2018). [2200+ citation, May 25, 2023]
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SwAV - Online clustering

« SwAV: Swapping Assignments between multiple Views of the same image.

* SwAV uses trainable prototypes vectors

>
\ 4

\ 4

Z,

1 @

N
_% Z Z ans -+ 1 anant — log Z exp
n=1s,t~T

k=1

[2100+ citation, May 25, 2023]

Machine Learning Spring Semester

Codes

Swapped
Prediction

Codes

() o ()]

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurlPS 2020
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Representation Learning

Clustering can be a way of self-supervised learning ( H Ik
21 . How?

Now, the most popular representation learning methods
are based on self-supervised learning, e.g., MoCo, SimCLR.

contrastive loss contrastive loss contrastive loss
q-k qk q-k
q k q k q k
encoder q encoder k encoder samping encoder el
encoder
memory
k bank k

z? T z x4 T

(a) end-to-end (b) memory bank (c) MoCo

Kaiming He et al., Momentum Contrast for Unsupervised Visual Representation Learning.
CVPR 2020 [7000+ citation, May 25, 2023]
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