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Lecture 1

Introduction
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Example: “Sheep” vs. “Goat” (Cont.)

The central aim of designing a classifier is to make correct
decisions when presented with novel (unseen/test) patterns,
not on training patterns whose labels are already known

Performance on \

the training set
" Tradeoff

Simplicity of
the classifier
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Generalization Error

Definitions of the generalization error and empirical error from
“Foundations of Machine Learning ”

Definition 2.1 (Generalization error) Given a hypothesis h € H, a target concept c € C,
and an underlying distribution D, the generalization error or risk of h is defined by

R(h) = P [h(z) # @) = E_[lnayke)]

where 1, is the indicator function of the event w.?

The generalization error of a hypothesis is not directly accessible

Definition 2.2 (Empirical error) Given a hypothesis h € H, a target concept c € C, and
a sample S = (x1,...,Tm), the empirical error or empirical risk of h is defined by

. 1 &
Rs(h) = — 3 Ineteta);
1=1
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Lecture 2

Linear Regression
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Linear Regression — loss function

Minimize mean-squared error (MSE):

Loss function: How much ¥ differs from the true y

m

E(w,b) = Z (yz — Wr; — 5)2

1=1
Calculate the derivatives of £, with respect to
andp :
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Linear Regression - Least Square Method

= We have the closed-form solutions

Zz 1yz( )
it — o (0 ‘Ui)z

1 m
where z=— Zmz
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Multivariate Linear Regression

Rewrite wandb as w = (w; b), the data set is
represented as

(3311 12 o s L1d 1\ (wrlr 1\
- Tor T v T2 1 xl 1

Y = (Y1;¥2; -} Ym)
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Multivariate Linear Regression - Least
Square Method

O Least square method

w* = argmin(y — Xw) (y — X)

w

Let E; = (v — Xw)'(y — Xw) and find the derivative with respect to w

OE,,

—= = 2X" (X — y)
ow

The closed-form solution of w can be obtained by making the equation
equal to 0.

Machine Learning Spring Semester
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Multivariate Linear Regression - Least
Square Method

O If X'X is a full-rank matrix or a positive definite
matrix, then

W = (XTX) ' XTy

where (XTX)_I is the inverse of XX, the learned multivariate
linear regression model is

f(&:) =af (XTX)"

1 XTy
O XTX is often not full-rank

® gradient descent (which is more broadly applicable)
® pseudo-inverse
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Lecture 3

Logistic Regression
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Binary Classification

The predictions and the output labels

z=wlx +D y € {0,1}

The real-valued predictions of the linear regression model need
to be converted into o/1.

Ideally, the unit-step function is desired
(0, 2<0;
y=4< 05, z=0:

1, z>0.

\,

o which predicts positive for 2 greater than o, negative for z smaller
than o, and an arbitrary output when 2 equals to o.

Machine Learning Spring Semester 13



Binary Classification

Disadvantages of unit-step function

0 not continuous

Logistic (sigmoid) function: a surrogate function
to approximate the unit-step function

o monotonic differentiable

Comparison between unit-step
function and logistic function

o(z) =

10 z
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Logistic Regression

Data: Inputs are continuous vectors of length d. Outputs are

discrete labels.  im
D = {:1:(’), y(Z)}'—1 where £ € R? and y € {0,1}
Model: Logistic function applied to dot product of

parameters with input vector. 1

1+ exp(—OTx)

po(y=1|x) =

Learning: finds the parameters that minimize some objective

function. 0* = arg min J(6)

Prediction: Output is the most probable class.

§ = argmax pg(y|x)
ye{0,1}

Machine Learning Spring Semester 15



Log odds

Apply logistic function

1 1
Y= 1+ e transform into ¥ =

Log odds

o the logarithm of the relative likelihood of a sample being
a positive sample

1 _I_ e—(wTiB+b)

In =wix+b

-y
Logistic regression has several nice properties

o without requiring any prior assumptions on the data
distribution

o it predicts labels together with associated probabilities
e it is solvable with numerical optimization methods.

Machine Learning Spring Semester
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Logistic regression - maximum likelthood

Maximum likelihood

0 Given the training dataset D = {(@x;, ;) }:*,

0 Maximizing the probability of each sample being
predicted as the ground-truth label

the log-likelihood to be maximized is:

m

{(w,b) =1log | [ p(yi | z:;w,b)

1=1

assumption that the training examples are independent:

{(w,b) = Zlogp(yz- | &;; w,b)
=1

7
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Logistic regression - maximum likelthood

Log odds can be rewritten as

ply=1]|=)

In —w'x +b
p(y=0]x)
and consequently,

ewTw+b . . -
py=1|=x) = g = sigmoid(w" « + b)

1 N
ply=0]|x) = —— =1 — sigmoid(w"x + b)

1 _l_ e'w x+b

= sigmoid(—(w’z + b))
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Logistic regression - maximum likelthood

Transform into minimize negative log-likelihood
0 Let 8= (w:b), £ =(x;1), w'x+b can be rewritten
as @'z
0 Let pi(z;8)=py=1]|x;08)
po(zi;8) =py=0]x;8)=1—pi(2;B8)
the likelihood term in can be rewritten as
p(Yi | T3 w;, b) = yip1 (25 8) + (1 — yi) o (245 B)
0 maximizing log-likelihood is equivalent to minimizing
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Logistic regression - maximum likelthood

Transform into minimize negative log-likelihood
0 Let 8= (w:b), £ =(x;1), w'x+b can be rewritten
as @'z
0 Let pi(z;8)=py=1]|x;08)
po(Zi;B)=py=0]x:8)=1—p: (2 B)
the likelihood term in can be rewritten as
p(yi | #51Wi,b) = p1(&:; B)"po (24 8)'

0 maximizing log-likelihood is equivalent to minimizing

m

J(B) = —[yslogp1(&:; B) + (1 — y;) log po(&:; B)]
i1

The Cross-Entropy loss!
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Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, §©)
0 — 6

1:

2

3: while not converged do
4 O+ 0 -« VQJ(H)

5

ret urn H S e

dfy

35:7(0)
VeJ(0) = | ™ 0t — 9t — 1V Jp(0))

Machine Learning Spring Semester
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Gradient for Logistic Regression

» The cross-entropy loss function

m

J(B) =) —lyilogpi(@s; B) + (1 — ui) log po(&i; B)]

1=1

* The gradient

J m
¥) — ;w(yz — p1(2:;8))

* Instead of using the sum notation, we can more efficiently
compute the gradient in its matrix form

X € R™™

0J(B) 7
8 X(o(X*B) —y)

o : sigmoid
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Lecture 4
Model Selection and

Evaluation
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Performance Measure

Error rate and accuracy are the most commonly used
performance measures in classification problems :

Error rate is the proportion of misclassified samples to
all samples

Accuracy is the proportion of correctly classified samples

instead
Error rate Accuracy
1 m
ZI[ (x;) # ;) acc(f; D) = Ezﬂ(f(m
= 1-E(f;D)
Machine Learning Spring Semester 24




Performance Measure

We often want to know “What percentage of the retrieved information is
of interest to users?” and “How much of the information the user
interested in is retrieved?” in applications like information retrieval and
web search. For such questions, precision and recall are better choices.

In binary classification, there are four combinations of the ground-
truth class and the predicted class, namely true positive, false positive,

true negative, and false negative. The four combinations can be
displayed in a confusion matrix.

The confusion matrix of binary classification

Predicted class Precision p-= i
Ground-truth class

TP+ FP
Positive Negative
Positive TP FN L TP
Negative FP TN Recall TP+ FN
Machine Learning Spring Semester
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Lecture 6
Support Vector

Machines
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The Lagrange Method

Consider a general optimization problem (called as primal problem)

min, f(x)
subject to g;(z) >0,i=1,---,k
hy(z) = 0,

(z)

j=1,---,m.

We define its Lagrangian as

m

k
L(z,u,v) = f(z) — Z Aigi(x) + ) ujh(x)

j=1

Lagrangian multipliers 1 € R*,u € R™.

Machine Learning Spring Semester 27



The Dual Problem

A re-written Primal Problem :

min max L(x, A, u)

x Az0u Although the primal
problem is not required to
be convex, the dual

max min L(x, A, u) problem is always convex.

The Dual Problem:

A=0u x

Theorem (weak duality):

d” = max min L(x, 4, u) < min max L(x,4,u) = p°
AzZOu x x Az0,u

Theorem (strong duality, e.g., Slater’s condition):
[f the primal is a convex problem, and there exists at least one strictly
feasible X, meaning that 3%,g;(¥) >0,i =1,..,k, (X)) =0,j =1,..,m.

d*=p*

Machine Learning Spring Semester 28



Karush—Kuhn—Tucker (KKT) conditions

Necessary conditions

If x* and A%, u™ are the primal and dual solutions respectively with zero
duality gap, we will show that x*, A*, u* satisfy the KKT conditions.

f(z*) = d(A*, u") by zero duality gap assumption

k m
= min f(z) — Z Al gi(x) + Z u;h;(x), by definition
* =1 =1 . .
stationarity

k
< f(z*) — Z A gi(z*) + Zu}fhj(a:*) equality: x* minimizes L(x, A", u")
i=1
< f(z%) equality: 47 g;(x*) =0

complementary slackness

For convex problems with strong duality (e.g., when Slater's condition is satisfied),
the KKT conditions are necessary and sufficient optimality conditions, i.e., x*
and (1, u*) are primal and dual optimal if and only if the KKT conditions hold.

Machine Learning Spring Semester 29



The Primal Form of SVM

Maximum margin: finding the parameters wand b that

maximize .
w-x;+b>1, ify =+1;

2 W'Xi—l—bé—l, lfyZ:—].

arg max —-
wr ] s

st yi(w'x; +b0)>1,i=1,2,....m.

$

.1 5
arg min —||w||
w,b 2

st. yi(w'x, +0)>1,i=1,2,...,m.

This is an optimization problem with linear, inequality constraints.

Machine Learning Spring Semester
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Dual problem

Lagrange multipliers
o Step-1: introducing a Lagrange multiplier a;; > 0, gives the
Lagrange function
1 m
L(w,b,a) = 5||wu2 ) o (yi(w ' +b) — 1)
i=1
0 Step-2: Setting the partial derivatives of L(w),b, ) with respect
to W and b to 0 gives

w = Z Q;Y; Ly Z a;y; = 0.
i=1 i=1
0 Step-3: Substituting back

mm —ZZazajyzy]w T;— Zaz

zlyl

s.t. Z%‘%ZO, a >0, 1=1,2,....m

=1
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Sparsity of the solution

desired model: fle)=w'z+b=> ", qyx x|+

.« w= ) YT a;y; = 0. tati it
KKT conditions: 2 o 2 stationarity
(az- > 0, dual constraints
S yif(x;) > 1, primal constraints
\Oéz'<yif (wz> — 1) = 0. complementary slackness

Sparsity of the solution of SVM: once the training
completed, most training samples are no longer needed
since the final model only depends on the support vectors.
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Key idea #2: the slack variables

-Q: It is often difficult to find an appropriate kernel function
to make the training samples linearly separable in the
feature space. Even if we do find such a kernel function, it is
hard to tell if it is a result of overfitting.

-A: Allow a support vector machine to make mistakes on a
few samples: soft margin.

4 w'x+b=1 _
)

Instances violating the
constraint
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{1 relaxation of the penalty term

The discrete nature of the penalty term on previous slide, );; 1 £50 =

||§ ||o, makes the problem intractable.

A common strategy is to replace the £ penalty with a #; penalty:
Y. & =|€|l;, resulting in the following full problem

1 2
min —||wl||5 + C - E ;
,b’g 2” ||2 i €’l

subject to y;(w-x; +b) > 1—¢&; and & > 0 for all 3.
Remarks:

(1) Also a quadratic program with linear ineq. constraints (just more
variables): y;(w - x; + b) + & = 1.

Machine Learning Spring Semester
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The Lagrange dual problem

The associated Lagrange function is

L(w,b,&,X, i) = —||w||2+CZ§Z ZA (yi(w-x; +b) —1+&) — Zuzsz

1=1 1=1

(stationary point) To find the dual problem we need to fix 1,
f and maximize over w, b, «,g :

OL
a—W :w—Z)\zyzxz:O

— = Aiyi =0

oL
9&;

ZC—)\i—/,Lz'ZO, Vi
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The Lagrange dual problem

This yields the Lagrange dual function

X,ﬁ Z)\ — — Z)\ NiYiYiX; - X4, where

Ai 20, pi 20, A+ p; =C, and Z)\z’yizo-

The dual problem would be to maximize L* over /T, { subject to the
constraints.

Since L* is constant with respect to the y;, we can eliminate them to

obtain a reduced dual problem:
What

1
max D A~ g 2 A X changed?

Ay An i 7
)

subject to Q < )\ < q and Z Aiy; = 0.

box constraints
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What about the KK'T conditions?

The KKT conditions are the following

W = Z)\iyixia Z)\iyi =0, N+ =C
Ai(Yi(Ww-x; +b) —1+&) =0, p& =0
Ai >0, p;=>0
yi(w-x;,+b)>1-&, & >0
We see that
* The optimal w has the same formula: w = ) 4;y;x;.
 Any point with 4; > 0 and correspondingly y;(w - x +

b) = 1 —¢; is a support vector (not just those on the margin
boundaryw-x + b = £1).
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y(w-x;+b) >1-¢&, Vi .8%322 4

S

\
N
\
A A
\
N
\
N

(&=0) ™~ 0<&<1
® \\ (&.:0)
Z}<§Z-<1\
. N
w-x+b=1
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What 1f the data 1s not linearly
separable?

Use features of features
of features of features....

- BECEN
- +(0)
(1),.(2)
X X
(@) =1 1),0)

o)
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Kernel SVM

Let ¢(x) denote the mapped feature vector of x, the separating
hyperplane f(z)=w'¢(x)+b can be expressed as

1

Primal I?ull? §||’w||2
Problem st yi(w' (xy) +b) >1,i=1,2,....m
m
mm — Z Z azajyzyj¢(mi)T¢(wj) o Z g
Dual =t =
Problem

Y =0, 0>0,i=12...,m
1=1

Prediction  f(x) = w'¢(x) +b= Z aiyip(x:) o)+ b

Machine Learning Spring Semester 40



What are good kernel functions?

Linear kernel

0 K(x;, %) = p(x)d(x;) = x; - x;
Polynomial

0 K(x,x) = (x;- 2, + 1)

(Gaussian (also called Radial Basis Function, or RBF)

[T
a K(xl,x]) — e 202

Machine Learning Spring Semester
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‘ Quadratic kernel

s = (Tt o) = (zxmzw ; ) (zxw Lo

=1 =1
= ZZx f)—|—202x 29 4 2
1=1 /=1
— Z(‘T(j) () _|_Z\/7x \/72 )
=1

Feature mapping given by:

B(x) = (2102 205® 102 e 2er®, /2

Machine Learning Spring Semester



Representer theorem

SVM flx)=w'o(x) +b= Z a;yik(x;, ) + b
i=1
SVR flx)=w'¢(x)+b= Z(@z — a;)yik(x;, @) + b

1=1

Conclusion: The learned models of SVM and SVR can be
expressed as a linear combination of the kernel functions.

A more generalized conclusion(representer theorem): for
any increasing function 2 and any non-negative loss
function [, the optimization problem

min F(h) = Q(|[hlls) + 1(A(z1), -, (@)

m

Solution can be written in the form of 7 = Z aik(+, ;)
1=1

Machine Learning Spring Semester
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Lecture 8

Backpropagation

Machine Learning

Spring Semester
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Backpropagation Summary

1. Forward pass: for each training example,
compute the outputs for all layers:

x; = fi(x;-1,6;)

2. Backwards pass: compute loss derivatives
iteratively from top to bottom:

8]  8J of

8xl_1 - BXZ ' axl_l

3. Parameter update: Compute gradients w.r.t.
weights, and update weights:

8J _98J 8f,
8(95 N 8xl 8(91

4
‘C(XLLY)

0J
(output) ' xr, la—xL o
>
fL < 9[,

M X711 afj_l

. 97"
Xl \ & J
f b
! < (),

X1—1 31"_ 1

: 6"
X2 \ 8J
fo => 5,
e 92

oJ
X1 o o7
<
« 01

(input) Xq

45




Linear layer

——  « Forward propagation: Xout = f(Xin, W) = Wxy,

. Xout W Xin
Xin m 8in _
|| —_—
V E With W being a
matrix of size
* Backprop to input: [Xout|x[Xil
aJl)<}(in7 W) aXout
gin — gout ' — gO'th ¢ —
aXin aXin

If we look at the i component of output Xout, With respect to the j component of the input, Xin:

8Xouti 8]" Xin )
8Xinj B ZJ 9 8X1n =W
Therefore: &in Zout W
T = [
gin = Bout ° \%%




Linear layer

F(Xin, W) » 5w ° rorward propagation: Xout = F(xin, W) = Wxyy
. T W« Backprop to input:
- gin = 8out W 8in Lout W
v EEEE - SN

Now let’s see how we use the set of outputs to compute the
weights update equation (backprop to the weights).

47



Linear layer

o ion: Xout = f(Xin, W) = Wx;
. W) 2 aw Forward propagation: Xout = f(Xin, W) n
Xin = Sin « Backprop to weights:
; 0.J Of (Xin, W) ot
= Bout * = Bout * Az
OW oW OW
If we look at how the parameter Wjj changes the cost, only the i component
of the output will change, therefore: 2y
oW Xin Bout
0J 0J 8 —
Xow, _ 0 o o = [0
OW,; 8xout 8sz 1‘ OXout, J X
axoutl

= Xin.
oW, J

And now we can update the weights: | W* « W* 4y ( ;é,)



Linear layer

8in Weight updates:

WHhtL . Wk +n(

o0J

oW

!
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Machine Learning

Lecture 9

Convolution Neural
Network

Spring Semester
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Simplification 2

3X3X3
welghts

.IIIIIIIIIIIIIIIIIIIIIII> T blas

parameter sharing

fg X 3 X 3 weights
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‘ Pooling — Max Pooling

No learnable

parameters!
1| -1 -1 1|1 | 1
-1| 1 | -1| Filter1 -1 | 1 | -1 | Filter 2
-1 1|1 1|1 | 1
. NV N
3 - 3 L -1 -1 -1 -1
~ NV h
3 3 0 1 -1 -1 -2 1
@ i | AN, 1) 0 ; 2§ 3
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Chapter 11

Decision Tree

Machine Learning

Spring Semester
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‘ Basic Process

(1) All samples in the
Input: Training set D = {(z1,91), (€2,42), -+, (Zm,Ym)}: current node belong to
Feature set A = {ay,as,...,aq4}. the same ClaSS.

Process: Function TreeGenerate(D, A)
I: Generate node 7;
2: if All samples in D belong to the same class C' then

Algorithm 4.1 Decision Tree Learning.

(2) The current feature

- if A = @ OR all samples in D take the same value on A then .
set is empty, or all

6:

Joendit samples have the same
8: Select the optimal splitting feature a. from A;

9: for each value a? in a« do feature Values.

10: Generate a branch for node i; Let D,, be the subset of samples taking value al on a,;

11: if D, is empty then

12 [k this child mode a a e mode. and Tab i he majoy s T D rern |

13: else

14: Use TreeGenerate(D,, A\{a« }) as the child node. (3) There is no Sample 1n
150 endif

16: end for the current node.

Output: A decision tree with root node i.

Machine Learning Spring Semester 54



Split Selection: Information Gain

Suppose that the discrete feature @ has V possible values{a', a?, ..., a" }.
Then, splitting the data set D by feature @ produces V child nodes, where
the Vth child node D?includes all samples in D taking the value a" for
feature . Then, the information gain of splitting the data set D with
feature 0 is calculated as
~ [
Gain(D,a) = Ent(D) — ) WEm(pv)
v=1

is the importance of each node. The greater the number
of samples, the greater the impact of the branch node.

In general, the higher the information gain, the more purity
improvement we can expect by splitting D with feature @ .

The decision tree algorithm ID3 [Quinlan, 1986] takes information gain
as the guideline for selecting the splitting features.
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Pruning

Why pruning?
0 Pruning is the primary strategy of decision tree learning
algorithms to deal with overfitting.

o If there are too many branches, then the learner may be
misled by the peculiarities of the training samples and
incorrectly consider them as the underlying truth.

General Pruning Strategies

Q pre-pruning

QO post-pruning

How to evaluate generalization ability after pruning?

a0 We can use the hold-out method to reserve part of the data
as a validation set for performance evaluation.

Machine Learning Spring Semester




Pruning: Pre-pruning

Pre-pruning decides by comparing the
generalization abilities before and after splitting.

o If the validation accuracy decreases after pruning, the
splitting is accepted.
0 Otherwise, the splitting is rejected.

When no splitting is performed, this node is
marked as a leaf node and its label is set to the
majority class.

Machine Learning Spring Semester 57



Pruning: Post-pruning

O Post-pruning allows a decision tree to grow into a complete tree.

Then it takes a bottom-up strategy to examine every non-leaf node
in the completely grown decision tree.

1
?umbilicus=? ]

hollow flat
slightly hollow

The validation
accuracy of this

decision tree is
42.9%

straight

Machine Learning Spring Semester




Chapter 12

Bayesian Classifier

Machine Learning Spring Semester
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Bayes Decision Theory

1 Bayesian decision theory is a fundamental decision-making
approach under the probability framework.
® When all relevant probabilities were known, Bayesian decision

theory makes optimal classification decisions based on the
probabilities and costs of misclassifications.

] Let us assume that there are N distinct class labels, that
is,y ={c,c,...,cn}. Let \; denote the cost of misclassifying
a sample of class ¢jas class ¢; . Then, with the posterior
probability P(¢; | ) we can calculate the expected loss of
classifying a sample X as class¢;, that is, the conditional
risk of the sample X: N

R(ci|x) =) AjP(c; | %) (7.1)

j=1

] Our task is to find a decision rule j, - X — Y that minimizes

the overall risk:
R(h) = E; [R(h(x) | x)] (7.2)



Bayes Decision Theory

] The overall risk R(h) is minimized when the conditional risk
R(h(x) | x) of each sample x is minimized.

1 This leads to the Bayes decision rule: to minimize the
overall risk, classify each sample as the class that minimizes
the conditional risk R(c | x)

h*(x) = argmin R(c | x)

cecy

® where h* is called the Bayes optimal classifier, and its
associated overall risk R(h*)is called the Bayes risk.

® 1- R(h")is the best performance that can be achieved by any
classifiers, that is, the theoretically achievable upper bound of
accuracy for any machine learning models.



Bayes Decision Theory

] For generative models, we must evaluate:

P(c|x) =

O According to Bayes’ theorem,
P(c | x) can be written as:

P(x,¢)
P(x)

the class-conditional
probability, also known as
the likelihood, of the
sampleX with respect to
class C

P(c)P(x | c)

P(c|x) =
the prior probability /

represents the proportion
of each class in the sample,
which can be estimated by
the frequency of each class
in the training set

P(x)

N

the evidence factor,
which is independent of
the class




Naive Bayes Classifier

P(z; | )

P(c|x) =

P()P(x|c) _ P(o) 1
P(x P(x) -

1=1

Since P(z) is the same for all classes, from the Bayes
decision rule, we have

hnp(x) = argmax P(c) HP(IZ | ¢)

<y i=1

which is the formulation of the Naive Bayes classifier.



Naive Bayes Classifier

O To train a Naive Bayes classifier, we compute the prior
probability P(c) from the training set Dand then compute
the conditional probability P(z; | ¢) for each attribute.

® Let D. denote a subset of D containing all samples of class ¢
Then, The prior probability can be estimated by
_ D

P(c) = D

® For discrete attributes, let D.., denote a subset of D.
containing all samples taking the value x; on the i-th
attribute. Then, the conditional probability P(z; | c)can be
estimated by D.,.|

P(x; | c) = —=
| D|

® For continuous features, suppose p(zil|c) ~ N(pei,02;) , where fie
and o, are, respectively, the mean and variance of the i-th
feature of class c¢. Then, we have
1 (5137, — :uc,i)Q
eXp(_ 2 )
V270, 20.;

P(z;|c) =



Laplace (add-1) Smoothing

[ To avoid “removing” the information carried by other features, a
common choice is the Laplace smoothing.

® Let N denote the number of distinct classes in the training
set D, N, denote the number of distinct values the i-th
feature can take. Then, we write smoothed version of prior
probability and conditional probability as:

.« |Del+1
Ple) = |ID|+ N’
Why?
Pa; | o) = et

|Dcl I Nz’



Text Classification

The Bag of Words Representation

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. l've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

’\

fairy ajways loveyg !t
nlt whimsica!areit |
seen
[ anyone
f”enﬁappy dialogue 4
adventure récommend

it ' but rgtmantlc |
several

again i the humor
ihe g it

seen would
to scenes | the manage
fun the times
and and

about

whenever have while
__conventions
with

it

I

the

to

and

seen

yet

would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
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Multinomial Distribution

Suppose one does an experiment of extracting n balls of k different colors
from a bag, replacing the extracted balls after each draw. Balls of the same
color are equivalent. Denote the variable which is the number of extracted
ballsof colori (i = 1,...,k) as X;, and denote as p_i the probability that a
given extraction will be in color i.

The probability mass function of this multinomial distribution is:

f(zy,...,xp;n,p1,...,pk) = Pr(X; =27 and ... and X = x;)

X Tl k .
Py X X Pt when ) . ;z; =n

L0 otherwise,

for non-negative integers x4, ..., X.



Generative Model for Naive Bayes

P(x; | c)

:




Text Classification

Consider a naive Bayes model with the classes positive (+) and negative (-)
and the following model parameters:

w  P(wl+) P(w|-)
I 0.1 0.2
love 0.1 0.001
this 0.01  0.01
fun 0.05  0.005
film 0.1 0.1

P(*I love this fun film”|+) = 0.1 x 0.1 x 0.01 x 0.05 x 0.1 = 0.0000005
P(“I love this fun film”|—) = 0.2 x 0.001 x 0.01 x 0.005 x 0.1 = .0000000010

Note that this is just the likelihood part of the naive Bayes model.



Text Classification

To apply the naive Bayes classifier to text, we need to consider
word positions, by simply walking an index through every word
position in the document:

positions < all word positions in test document

cyg = argmaxP(c H P(wjlc)

ceC IE positions

Naive Bayes calculations are done in log space, to avoid
underflow and increase speed

cyg = argmaxlogP(c)+ Z log P(wj|c)

ceC [E positions

Naive Bayes is a linear classifiers.



Training the Naive Bayes Classifier

Let N. be the number of documents in our training data with class ¢
and N,,. be the total number of documents. Then:

A N,
Pc) =
Nioc
. count (w;,c)
P(wi|c
(wile) > ey count(w,c)
. count (wj,c) + 1 count (w;,c) + 1

P(w,-|c) - ZWEV (count(W,C)-l—l) - (Zwevcoum‘(W,C)) ‘|—’V|




Text Classification

I 3 S -~

Training

Test

Priors:
P(c) =7
P(j) =?

1
2
3
4
5

Chinese Beijing Chinese

Chinese Chinese Shanghai C
Chinese Macao C
Tokyo Japan Chinese j
Chinese Chinese Chinese Tokyo Japan ?

Conditional Probabilities: Choosing a class:
P(Chinese|c) =?

P(Tokyo|c) =? P(c|d5) =?
P(Japan|c) =? P(jld5) =?
P(Chinese|j) = B | count(w,c)+1
P(Tokyolj) =? Plwle)= count(c)+1V |

P(Japanlj) =



Text Classification

Priors:

3+1
P(C)=—=§

N
+ 4|+
(\O)

p—

1
P' = —_—= -
2 4+4+2 3



Text Classification

Conditional Probabilities:

P(Chinese|c) = (5+1)/(8+6)=6/14=3/7
P(Tokyolc) = (0+1)/(8+6)=1/14
P(Japan|c) = (0+1)/(8+6)=1/14
P(Chineselj) = (1+1)/(3+6) = 2/9
P(Tokyol|j) = (1+1)/(3+6)=2/9
P(Japan|j) = (1+41)/(3+6)=2/9



Text Classification

Choosing a class:

31

~ 0. 27
*1g *1g ~ 0000

P(c|d5) « % % (;)

3

P(j|d5) L (2) ‘2 0.00018
X— *x |— *x — x— =~ ().
U 3 9 9 9O



Chapter 13

Ensemble Learning



Bagging

0 Bagging = Bootstrap AGGregatING

Algorithm 8.2 Bagging.

Input: Training set: D = {(@1,v1), (2, 92), ..., (Tm,ym)}:
Base learning algorithm £;
Number of training rounds 7'
Process:
[: fort=1,2,....,T do
2: ht = £(D,Dyg).
3: end for
Output: H(x) = argmax, .y, Z;Tzl [(he(x) = ).

The bootstrap is one of the most important ideas in all of statistics!



Random Forests

0 Random Forests = bagged decision trees, with one
extra trick to decorrelate the predictions

» When choosing each node of the decision tree,
choose a random set of input features, and only
consider splits on those features

0 Random forests are probably the best black-box
machine learning algorithm — they often work well
with no tuning whatsoever.

» one of the most widely used algorithms in Kaggle
competitions



Chapter 14

Clustering



k-means Convergence

Objective
m;nmCmZ _1 Yxec;|X — mil?

1. Fixpy, optimize C:

Step 1 of kmeans

mlnz Z lx — p;|? = mlnz|xl /,txl|

=1 x€C; 5

2. Fix G, optimize u:
min %; Y1 Ywec,lx — wil? |
— Take partial derivative of u; and set to zero, we have ) o 0 o0 0o
) R E—
Hi = 1Ci| x Step 2 of kmeans

Kmeans takes an alternating optimization approach, each step is guaranteed to
decrease the objective — thus guaranteed to converge

[Slide from Alan Fern]



Hierarchical Clustering

O Hierarchical Clustering aims to create a tree-like
clustering structure by dividing a data set at different

layers. The hierarchy of clusters can be formed by taking
either a bottom-up strategy (Agglomerative , B2£E) or a

top-down strategy (Divisive , 137%3).
O AGNES algorithm (bottom-up Hierarchical Clustering)

starts by considering each sample in the data set as an
initial cluster. Then, in each round, two nearest clusters are
merged as a new cluster, and this process repeats until the
number of clusters meets the pre-specified value.

We define the distances of given clustersC; and C; in
different forms.



Hierarchical Clustering

Minimum distance ( single-linkage , "“ERf&E" ):
dmin(Ci,C;) = min _ dist(z, 2)

:BEC,L',ZECJ'
Maximum distance ( complete-linkage , "&fEiE" ) :
d C;,C;) = max dist(x, =z
maX( v J) mECi,'ZECJ’ ( )

Average distance ( average-linkage , "t9%&#E ")

dan(Ciacj) — il) z)

wEC zeCj



Hierarchical Clustering - dendrogram

O The dendrogram ( &34KE ) of AGNES :
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Updating Distance Matrix

Let us assume that we have five samples (a,b,c,d,e) and the following
matrix of pairwise distances between them:

a b c d e
a 0 17 21 31 23
b 17 0 30 34 21
c 21 30 0 28 39
d 31 34 28 0 43
e 23 21 39 43 0

In this example, D;(a,b) = 17 is the lowest value of D, so we cluster
samples a and b.



Updating Distance Matrix

We then proceed to update the initial distance matrix D, into a new
matrix D,, reduced in size by one row and one column. Let's consider
the single-linkage clustering:

= min(D(a,c),D;(b,c))
= min(D;(a,d), D1 (b, d)
= min(D;(a,e),D1(b,e))
(a,b) c
(a,b) 0 21
c 21 0
d 31 28
e 21 39

= min(21, 30)
= min(31,34)
= min(23,21)

d e

31 21

28 39

0 43

43 0

21
31
21

What if we adopt the complete-linkage clustering?



