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Types of Machine Learning Algorithm

Supervised Learning

0 Given: training data + desired outputs (labels)

Semi-Supervised Learning

o Given: training data + a few desired outputs
Unsupervised Learning
0 Given: training data (without desired outputs)

Reinforcement learning

0 Rewards from sequence of actions
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‘ Machine Learning Pipline

learning algorithm

Training
Data

Label

/ \ / train _—
Harden Teacher 60k No / 2\

Kobe Athlete 70k Yes Decision Tree , Neural Networks ,
Durant |  Student 20k .. No SVM , Boosting , Bayesian
Curry |Entrepreneur| 150k Yes Network ,

James Actor 130k No

Jordan | Teacher 80k Yes — I I
New Samples

o . Pearl, Teacher, $80,000

e Objective function

* Optimization method

e Evaluation metric Unknown
Label
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Components of Learning

Formalization

Input: x (customer info)

Output: y (good/bad customer?)

Target function: f: X —>Y (ideal evaluation formula)
Data: (x1,y1), (x5, v2), -+, (X5, V) (historical records)

ol

Hypothesis: g : X - Y (formula to be used)
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Components of Learning

Unknown Target Function
f:X>Y

Final Hypothesis
(ideal evaluation formula) g=f
1 (final evaluation formula)

Training Examples
(xlr )’1), T (xn; Yn)

(historical records of customers info)

Learning
Algorithm

A

Hypothesis Set
H

(set of candidate formulas)
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Empirical Error and Overtitting

Error rate & Error:

o Error rate: proportion of incorrectly classified samples E = a/m

o Error: the difference between the output predicted by the learner and
the ground-truth output

Training (empirical) error: on training set
Test error: on testing set
Generalization error: the error calculated on the new samples

O Since the details of the new samples are unknown during the training
phase, we resort to minimizing the empirical error in practice.

O Quite often, we obtain learners that perform well on the training set
with a small or even zero empirical error, that is, 100% accuracy.
However, are they the learners we need? Unfortunately, such learners
are not good in most cases.
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Empirical Error and Overtitting

Overfitting:

When the learner learns the training examples “too well”, it
is likely that some peculiarities of the training examples are
taken as general properties that all potential samples will
have, resulting in a reduction in generalization performance.
o Regularize the training objective
o Early stop

Underfitting: ;
The learner failed to learn the general properties of training
examples.

o Do more branching in decision tree learning
o Adding more training epochs in neural network learning
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Empirical Error and Overtitting

Training samples of leaves New samples

Overfitted model: it is not a leaf
(the model thinks all leaves are serrated)

Underfitted model: it is a leaf

(the model thinks all green objects are leaves)

Overfitting: some peculiarities of the training examples are
taken as general properties that all potential samples will have.

Underfitting: the learner failed to learn the general properties
of training examples.
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[llustration of over-fitting

Simple target function
5 data points - noisy

4th-order polynomial fit

E;, =0, E,,:is huge
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Case Study

10th-order target + noise b0th-order target

& O Data
— Target
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Over-fitting versus bad generalization

3.5

Neural network fitting noisy data

Over-fitting: Ejn | Eout 1 Rl

E., : Generalization Error T Earlystopping  Eout.

or Out-of-Sample-Error o T/

in

0 1 1 | | 1 1 | | 1
0 1000 2000 3000 4000 5000 600 7000 8000 9000 10000
Fnarhe

Over-fitting: “fitting the data more than is warranted”
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A detailed experiment

Impact of noise level and target complexity

O Data
— Target

Machine Learning

Qy
y = f(@)+¢elx) =) a,z!+ e(x)
normalized

noise level: o
target complexity: Q)

data set sizee N
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Evaluation Methods
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Evaluation Methods

Here, we only consider the generalization error, but in real-
world applications, we often consider more factors such as
computational cost, memory cost, and interpretability.

We assume that the testing samples are independent and
identically sampled from the ground-truth sample
distribution, and use the test error as an approximation to
the generalization error , thus the test set and the training
set should be mutually exclusive as much as possible.
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Hold out

Given the only data set of m samples how can we do both
training and testing? The answer is to produce both a training
set S and a test set T from the data set D.

Splits the data set into two disjoint subsets

The splitting should maintain the original data
distribution to avoid introducing additional bias

We often perform the hold-out testing multiple times,
where each trial splits the data randomly, and we use the
average error as the final estimation.

One routine is to use around 2/3 to 4/5 of the examples for
training and the rest for testing

16
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Cross-Validation

Cross-validation splits data set D into k disjoint subsets with
similar sizes. In each trial of cross-validation, we use the union of
k — 1 subsets as the training set to train a model and then use the

remaining subset as the testing set to evaluate the model.

We repeat this process k times and average over k trials to obtain
the evaluation result. The most commonly used value of k is 10.

D
!

Ds| D:| Dy| Dy | Dy

{

D,| D,| D,| D,| D,

5

Training set Testing set
Dy| D,| Dy| D,| D;| Dy| D:| Ds| Dy| | Dy — Testing result 1
D, | Dy| Dsy| Dy| D5 | Dg| D7 | Dg| Dy Dy — Testing result 2 1
L . Averaging

D,| Dy| D,| Ds| Ds| D;| Dy| Dy|Dyy| | D, — Testing result 10

10-fold cross-validation
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Leave-One-Out

Like hold-out, there are different ways of splitting the data set D into k
subsets. To decrease the error introduced by splitting, we often repeat

the random splitting p times and average the evaluation results of p
times of k-fold cross-validation. For example, a common case is 10-time
10-fold cross-validation.

For a data set D with m samples, a special case of cross-validation is
Leave-One-Out (LOO), which lets k = m:

The random splitting does not matter
The evaluation from LOQ is very close to the ideal evaluation

Computational cost of training m models could be prohibitive for
large data sets

Machine Learning Spring Semester
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Bootstrapping

Given a data set D containing m samples, bootstrapping samples a data set D’
by randomly picking one sample from D, copying it to D', and then placing it
back to D so that it still has a chance to be picked next time. Repeating this
process m times results in the bootstrap sampling data set D’ containing m
samples. we can use D' as the training set and D\D' as the testing set.

random
sample

population

draw with compute <
replacement [;% statistic x - = .
3 £ o B
[ =) o —
sl g
» / ¢ s \ ‘4: N
) S |
\ '3 / 2
- ot ©
original sam / o
o % {
0 Q
o B T T
4 2 0 2 4
resamples X

Roughly 36.8% of the original samples do not appear in the training data.

Bootstrapping can create multiple data sets, which can be useful for
methods such as ensemble learning

Bootstrapping is particularly useful when the data set is small

Machine Learning
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Performance Measure

Performance measures can quantify the generalization ability.
Different performance measures reflect the varied demands of
tasks and produce different evaluation results.

In classification problems, we are given a data set D =

{(x1,y1), (x2,¥2), ..., (X, Ym)} where y; is the ground-truth label
of the sample x;. To evaluate the performance of a learner f, we
compare its prediction f (x) to the ground-truth label y.

For regression problems, the most commonly used performance
measure is the Mean Squared Error (MSE):

B D) = — 3 (f (@) — i)

21
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Performance Measure

Error rate and accuracy are the most commonly used
performance measures in classification problems :

Error rate is the proportion of misclassified samples to
all samples

Accuracy is the proportion of correctly classified samples
instead

Error rate Accuracy
m 1 &
E(f;D) =~ I(f () £y)  ace(fsD) = — 3 I(f (@) = )
m 1=1 1=1
= 1-E(f; D)

Machine Learning Spring Semester

22



Performance Measure

We often want to know “What percentage of the retrieved information is
of interest to users?” and “How much of the information the user
interested in is retrieved?” in applications like information retrieval and
web search. For such questions, precision and recall are better choices.

In binary classification, there are four combinations of the ground-
truth class and the predicted class, namely true positive, false positive,

true negative, and false negative. The four combinations can be
displayed in a confusion matrix.

The confusion matrix of binary classification

Predicted class Precision p-= TP

Ground-truth class

TP+ FP
Positive Negative
Positive TP FN P TP
Negative FP TN Recall TP+ FN
Machine Learning Spring Semester

23



Performance Measure

We can use the learner’s predictions to sort the samples by how likely
they are positive. Starting from the top of the ranking list, we can
incrementally label the samples as positive to calculate the precision
and recall at each increment. Then, plotting the precisions as y-axis
and the recalls as x-axis gives the Precision-Recall Curve (P-R curve).

1

0.8

Break-Even Point (BEP)
is the value when precision
and recall are equal, which
can be used to compare
performance when the P-R
curve intersects.

0.6

Precision

04 r

02r

0 0.2 0.4 0.6 0.8 1
Recall

P-R curve and break-even points

Machine Learning Spring Semester
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Performance Measure

BEP could be oversimplified, and a more commonly

used alternative is F1-score: .
Harmonic mean

F1_2><P><R_ 2xTP
P+ R total number of samples + TP — TN
The general form of F-scoreis : Fs

oo +B8%)x P xR
7~ (B2 x P)+ R

B =1 : Standard Fi-score
5> 1 :Recall is more important
B8 <1 : Precision is more important

The F-score has been widely used in the natural language processing literature,
such as in the evaluation of named entity recognition and word segmentation.

Machine Learning Spring Semester
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Performance Measure

The ranking quality reflects the learner’s “expected generalization
ability” for different tasks or the generalization ability for “typical cases”.
The Receiver Operating Characteristics (ROC) curve follows this idea to
measure the generalization ability of learners.

TPR

: : = FPR
The plotting process is as follows: TP + FN

“FP+TN

given m™ positive samples and m™ negative samples, we first sort all
samples by the learner’s predictions, and then set the threshold to
maximum, that is, predicting all samples as negative.

At this moment, both TPR and FPR are 0, so we mark at coordinate (0, 0).

Then, we gradually decrease the threshold to the predicted value of each
sample along the sorted list, that is, the samples are classified as positive
successively. Let (x, y) denote the previous coordinate, we put a mark at

1. : ..

(x,y + $) if the current samples is true positive, and we put a mark at
1 : : ..

(x + —, y) if the current samples is false positive.

By connecting all adjacent marked points, we have the ROC curve.
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Performance Measure

Learner A is better than learner B if A’'s ROC curve entirely encloses B's ROC
curve; However, when there exist intersections, no learner is generally better
than the other. One way of comparing intersected ROC curves is to calculate the
areas under the ROC curves, that is, Area Under ROC Curve (AUC or AUROC).

o

1.0 Suppose that the ROC curve is obtained by

sequentially connecting the points

0.8
{(x1; yl)' (fo yZ)i e (xmr ym)}! where X1 =
0.6 0 and x,,, = 1.
&
04l Then, the AUC is estimated as (£ HIFLA )
1 m—1
0.2}
AUC=3 Zl (Tiv1 — xi) - (Yi + Yis1)
0 02 04 06 08 10 .
FPR AUC considers the ranking
ROC curve and AUC with finite samples qua Ilty Of prediction S
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‘ Plot the ROC curve

(s1,0.77,+), (82,0.62, —), (s3,0.58,+), (s4,0.47,+), (s5,0.47, —), (86, 0.33, —), (s7,0.23, +), (s5,0.15, —)
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When to Use ROC vs. Precision-
Recall Curves?

ROC curves should be used when there are roughly equal
numbers of observations for each class.

Precision-Recall curves should be used when there is a
moderate to large class imbalance.

1.04 ==~ No Skill ~7 1.0 1 -=- No Skill
Logistic 17 Logistic
// .
0.8 A 7 0.8 1
L
o]
©
< 0.6 0.6
Q
=
=
g - 3
g <
o 0.44 s 2 0.4
2 4
=
//
0.2 L 0.2
//
// ________________________________________
004 ¢ 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall
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Cost-Sensitive Error Rate

In some problems, the consequences of making different errors are
not the same, thus we need to assign unequal costs to different errors.

For binary classification problems, we can leverage domain
knowledge to design a cost matrix. where cost;; represents the cost

of misclassifying a sample of class i as class j. The larger the
difference between the costs is, the larger the difference between

costy; and cost,g will be.

With unequal costs, however, we no longer minimize the counts but
the total cost, the cost-sensitive error rate is defined as :

E(f; D;cost) I% Y L(f (mi) # i) x costor + Z I(f (%) # i) x COSth)

x, €Dt x; €D~
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Predicted condition

Sources: [12][13][14][15]16][17][18][19][20] view - talk - edit

Total
population
=P+N

Predicted Positive (PP)

Predicted Negative
(PN)

Informedness, bookmaker

informedness (BM)

=TPR+TNR -1

Prevalence threshold (PT)
_ NTPR X FPR - FPR
- TPR - FPR

Actual condition

Positive (P)Le]

True positive (TP),
hitlbl

False negative
(FN),
type Il error, miss,

underestimation!©!

True positive rate (TPR), recall,
sensitivity (SEN),

probability of detection, hit rate, power

A om -
=0 4 —ENR

False negative rate (FNR),
miss rate

FN— —_
5 —1-TPR

Negative (N)!

False positive (FP),
type | error, false alarm,

overestimationl®!

True negative
(TN),

correct rejection[f]

False positive rate (FPR),

probability of false alarm, fall-out

_EP_ .
=5 L INR

True negative rate (TNR),

specificity (SPC), selectivity

N

= L IER

Positive predictive value (PPV),

False omission rate

Prevalence
P precision (FOR)
_ TP FN
pp — 1 ~FDR PN NPV
Accuracy . Negative predictive
False discovery rate (FDR)
(ACC) o value (NPV)
TP + TN =+5=1-PPV TN
_TP+TN PP = N
SFeT pn - 1 ~FOR
Balanced F, score Fowlkes—Mallows
accuracy (BA) | ppy x TpR 2 TP index (FM)
=TPR;—TNR T PPV+TPR 2TP+FP+FN | —+PPV x TPR

Positive likelihood ratio (LR+)
_ IPR
~ FPR

Markedness (MK), deltaP (Ap)
=PPV + NPV -1

Matthews correlation coefficient
(McC)
=vTPR x TNR x PPV x NPV

-VFNR x FPR x FOR x FDR

Negative likelihood ratio
(LR—)
FNR

TNR

Diagnostic odds ratio (DOR)
— LR+
~ LR-

Threat score (TS), critical
success index (CSlI), Jaccard

index
_ TP
~ TP + FN + FP

Machine Learning
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Outline

Bias and Variance
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Bias and Variance

0 Bias measures the difference between the learning algorithm's
expected prediction and the ground-truth label; that is,
expressing the fitting ability of the learning algorithm;

0 Variance measures the change of learning performance caused
by changes to the equal-sized training set, that is, expressing
the impact of data disturbance on the learning outcome;

The bias-variance decomposition tells us that the generalization
performance is jointly determined by the learning algorithm's ability,
data sufficiency, and the inherent difficulty of the learning problem.

In order to achieve excellent generalization performance, a small bias
is needed by adequately fitting the data, and the variance should also
be kept small by minimizing the impact of data disturbance.
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Bias and Variance

Bias-Variance analysis decomposes E,;; into

1. How well H can approximate f
2. How well we can zoom in on agood h € H

Applies to real-valued targets and uses squared error

Eou(9®)= Ex| (%) - £())’]

Ep [Bon(9®)] = Ep [B [P0 - £(0)°]

Machine Learning Spring Semester
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Bias and Variance — Squared Error

Now let us focus on:

5o | (97() — £(x))

We define the average hypothesis:

g(x) =Ep [Q(D) (X)}

Imagine many data sets D; D, Dy

1 K
g() ~ =D 9" ()
k=1

Machine Learning Spring Semester
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Bias and Variance - Using g(x)
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Bias and Variance

= | (9700 = £())"] = En [(4P(x) — 3(9) |+ (36) = £())’

=/ >4

va?(x) bi z?sr(x)

Therefore Ep [Eout(g(p))] = Ex [ED [(Q(D)(X) - f(x))z]]

= Ey|bias(x) + var(x)]

= bias + wvar

Machine Learning Spring Semester
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Bias and Variance Tradeoff

B |(300) — £())

bias

Sy
[

bias

HT

Vi
D)
-
n
=
P
Vs
o10)
k=
Vi
o
Vs
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Example — sine target

f:]-1,1]-R f(x) = sin(mx)
Only two training examplesl N =2

Two models used for learning:
Ho: h(ZC) =b
Hi: h(x)=ax+0

Which is better, Hy or H1?

Machine Learning Spring Semester
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‘ Learning H, versus H,

Ho Hi

2 T 2
15F 15
1 /_\‘\
0.5
0
-05
s
-15F 1.5
-2 L 1 L L L - - - - ) ! I I 1 1 ! I 1 I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1 =l -0.8 -0.6 -04 -0.2 0 0.2 04 0.6 0.8 1
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‘ Approximation — Hy versus H,

Ho

E,: = 0.50

-2 1 I I 1
-1 -08 -0.6 -04 -0.2 0 0.2 04

!
0.6

|
0.8

1

Hi

15 Eout —_ 0.20

| | 1 | 1 1 1 |
1 -0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Machine Learning
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‘ Bias and Variance — H,

Machine Learning Spring Semester

42



A
= S
A=
B\ \.5
ISy n
_ g
I fi =
A
| o
O E
O A
-
<
.« v
O
-
mlw (@)}
@ =
- S
oo It
o7 Q)
Z £




and the winner is . . .

H() Hl
> ~ > g(z
g()
sin(7mx) sin(mz)
xr i
bias = 0.50 var = 0.25 bias = 0.21 var = 1.69
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lL.esson learned

Match the “model complexity” to the data resources,
not to the target complexity.

Generalization error

——— Bias
------ Variance

Error

\ 4

Degree of training

Relationships between generalization error, bias, and variance.
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Further Reading
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Further Reading

Bootstrap sampling has crucial applications in machine
learning, and a detailed discussion can be found in [Efron
and Tibshirani, 1993]/.

ROC curve was introduced to machine learning in the late
1980s/Spackman, 1989/, and AUC started to be widely used
in the field of machine learning since the middle 1990s
[Bradley,1997]. [Hand and Till,2001] extended the ROC curve
from binary classification problems to multiclass

classification problems. [Fawcett,2006] surveyed the use of
the ROC curve.

[Drummond and Holte,2006] invented the cost curve. Cost-
sensitive learning [Elkan,2001;Zhou and Liu,2006] is a
research topic for learning under unequal cost settings.
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Further Reading

[Dietterich,1998] pointed out the risk of using the regular k-
fold cross-validation method, and proposed the 5 X 2 cross-
validation method. [Demsar, 2006/ discussed the hypothesis
testing methods for comparing multiple algorithms.

[Geman et al.,1992] proposed the bias-variance-covariance
decomposition for regression problems, which was later
shortened as bias-variance decomposition. For classification
problems, however, deriving the bias-variance
decomposition is difficult since the o/1 loss function is
discontinuous. There exist many empirical methods for
estimating bias and variance [Kong and
Dietterich,1995;Kohavi and Wolpert, 1996; Breiman, 1996;
Friedman,1997; Domingos,zoooﬁ
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Summary

How to do model selection?

o Cross-validation
0 Leave-one-out

How can we evaluate models?

a Accuracy
o Precision, Recall, F1
o0 AUC

Machine Learning Spring Semester
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