Lecture 7

Neural Network
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Neural network history

First stage

In 1943, McCulloch and Pitts proposed the first neural model, i.e., M-P neuron
model, and proved in principle that the artificial neural network can calculate
any arithmetic and logical function.

In 1958, Rosenblatt proposed Perceptron and its learning rule

In 1960, Widrow and Hoff proposed Adaline and the Least Mean Square (LMS)
algorithm

In 1969, Minsky and Papert published the book {Perceptrons) , which pointed
out that single-layer neural network cannot solve non-linear problems, and it is
unknown whether it is possible to train multiple-layer networks. This
conclusion directly pushed neural network research into an “ice age”
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Neural network history

First stage - Perceptrons, 1958
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Neural network history

First stage - Minsky and Papert, Perceptrons, 1969

Perceptrons: an introduction to computational geometry is a book written by Marvin Minsky and
Seymour Papert and published in 1969. An edition with handwritten corrections and additions was
released in the early 1970s. An expanded edition was further published in 1988 after the revival of
neural networks, containing a chapter dedicated to counter the criticisms made of it in the 1980s.

The main subject of the book is the perceptron, a type of artificial neural network developed in the
late 1950s and early 1960s. The book was dedicated to psychologist Frank Rosenblatt, who in 1957
had published the first model of a "Perceptron".[” Rosenblatt and Minsky knew each other since

Perceptrons: an introduction to
computational geometry

Author

Publication
date

ISBN

Marvin Minsky, Seymour
Papert

1969

0 262 13043 2

adolescence, having studied with a one-year difference at the Bronx High School of Science.l?] They became at one point central figures of a

debate inside the Al research community, and are known to have promoted loud discussions in conferences, yet remained friendly.[?’:|

This book is the center of a long—standing controversy in the study of artificial intelligence. It is claimed that pessimistic predictions made by

the authors were responsible for a change in the direction of research in Al, concentrating efforts on so—called "symbolic" systems, a line of

research that petered out and contributed to the so—called Al winter of the 1980s, when Al's promise was not realized.[*]

The crux of Perceptrons is a number of mathematical proofs which acknowledge some of the perceptrons' strengths while also showing major

limitations.'3! The most important one is related to the computation of some predicates, such as the XOR function, and also the important

connectedness predicate. The problem of connectedness is illustrated at the awkwardly colored cover of the book, intended to show how

humans themselves have difficulties in computing this predicate.[5] One reviewer, Earl Hunt, noted that the XOR function is difficult for humans

to acquire as well during concept learning experiments.[6]
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Neural network history

Second stage

In 1982, the physicist Hopfield proposed a recursive network with associative memory
and optimized computing power, i.e., the Hopfield network

In 1986, Rumelhart et.al. published the PDP book {Parallel Distributed Processing:
Explorations in the Microstructures of Cognition) , in which the BP algorithm was
reinvented

In 1987, IEEE holds the first international conference on neural networks in San Diego,
Carlifornia (ICNN)

In the early 1990s, statistical learning theory and SVM have emerged, while neural
networks were suffering from the lacking of theories, heavily relying on trial-and-error
and full of tricks. Neural networks enter another winter.
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Neural network history

LeCun conv nets,
PROC. OF THE IEEE, NOVEMBEJ@QS 7

C3:f. maps 16@10x10

C1: feature maps S4: f. maps 16 @5x5

INPUT
30y32 6@28x28 S50, iriee

6@14x14

C5: layer
150 F6 layer OUTPUT

r

I FuII conr#ectuon Gaussmn connections
Convolutions Subsampling Convolutions Subsampllng Full connectlon

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://yann.lecun.com/exdb/lenet/index.html
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Neural network history

Neural Information Processing Systems 2000

Neural Information Processing Systems, is
the premier conference on machine
learning. Evolved from an interdisciplinary
conference to a machine learning
conference.

For the 2000 conference:ﬁ
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Neural network history

Third stage

In 2006, Hinton proposed the Deep Belief Network (DBN), which makes the
optimization of deep models relative easy through “pre-training+fine-tuning”

In 2012, the Hinton team participated in the ImageNet competition and won the
championship of the year with a score of 10% over the second place using the

CNN model

With the advent of the cloud computing and big data era, computing power has
greatly improved, making deep learning models have achieved great success in

various fields

Images & Video Text & Language Speech & Audi‘o
: BBk gy S | b
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Neural network history

Third stage - AlexNet
Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

.j. N >
........ s 3 | - ;
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pooling pooling

AlexNet consists of 5 Convolutional Layers and 3 Fully Connected Layers.

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks.
NIPS 2012. Citations till April 7, 2024: 127789
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Third stage - AlexNet
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Neural network history
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ResNet
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

Kaiming He et. al. Deep Residual Learning for Image Recognition. CVPR 2015. Citations till April 7, 2024: 212268
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esNet

X |

v

weight layer
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Figure 2. Residual learning: a building block.

Yy = 3 X, {Wz} + WSX.

= WQO' W1X

e o denotes RelLU
»  Wsis only used when matching
dimensions
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Transtormer

Attention(Q, K, V') = softmax(

Multi-Head Attention Scaled Dot-Product Attention

Scaled Dot-Product
Attention
T -~

MultiHead(Q, K, V) = Concat(heads, ..., heady, )W ¢
where head; = Attention(QWz-Q, KWX vwY)
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Figure 1: The Transformer - model architecture.

Ashish Vaswani et. al. Attention Is All You Need. NIPS 2017. Citations till April 7, 2024: 115657

Machine Learning Spring Semester

14



Attention Visualization
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Neuron Model

Definitions of neural networks

“Neural networks are massively parallel interconnected networks ot simple
elements and their hierarchical organizations which are intended to interact with
the objects of the real world in the same way as biological nervous systems do”
| Kohonen, 1988

In the context of machine leaning, neural networks refer to “neural networks
learning”, or in other words, the intersection of machine learning research and
neural networks research

The basic element of neural networks is neuron, which is the “simple element”
in the above definition

Biological neural networks: the neurons, when “excited”, send
neurotransmitters to interconnected neurons to change their electric potentials.
When the electric potential exceeds a threshold, the neuron is activated, and it
will send neurotransmitters to other neurons.

2 RM

16
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M-P Neuron Model picculioch and Pitts, 1943

o Input: receive input signals from
neurons

-~ A
3 ¢ R
—
% 0 . E
Y R et
. -;
4 i

Warren S. McCulloch Walter Pitts

(1898-1969) (1923-1969)
o Process: The weighted sum of
received signals is compared against P i/ Curent neuron n
the threshold oy (Do)
| =
’ >
o QOutput: the output signal is AN .
produced by the activation function . T

Fig. 5.1: The M-P neuron model.
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Activation Function

The ideal activation function is the step function, which maps the
input value to “o” (non-excited) and “1” (excited).

The step function are discontinuous and non-smooth, we often use
the sigmoid function instead.

[}

sgn(z) t sigmoid(z)
] [——_— i -
0.5
ﬁ l » } | 1 | >
1 0 1 @ -1 —05 0 05 1z
sgn(z) = 1, == 0; . . 1
SER\T) = 0. z<0. sigmoid(z) = _p—
(a) Step function. (b) Sigmoid function.

Fig. 5.2: Typical neuron activation functions.
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Activation Function
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Perceptron

Perceptron is a binary classifier consisting of two layers of neurons. The
input layer receives signals and transmits them to the output M-P neuron
(threshold logic unit)

Perceptron can easily implement “AND”, “OR” and “NOT”

Y

Output layer
“AND” L1 /\ L9 lettlng W1 = W9 = ]_7 9 — ) w1 w2
y=f(l-x1+1-290—2),and y=1iff ;1 =29=1 e o
11 OR” 513'1 \/ fI;Q lettlng wl — w2 — 17 9 — 05 ) then Fig. 5.3: A perceptron with two input neurons.

y:f(]_x1+1x2-—05),al’ld yzllff :131:101' $2:1
“Not” —Tq: letting ; = —0.6,ws = 0,0 = —0.5, then
y=f(-06-x,+0:-x,+05), y=0when g, =1]land y = lwhen g, =(

Machine Learning Spring Semester
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Perceptron

Perceptron solving the “AND”, “OR” and “Not” problems

Separating hyperplane A
g “=" on the left-hand side )
/ “+" on the nght-hand side
(0,1) §—-Sgfom--- *(L.1) (0.1) @----—----- —9(1.1)
® & > ® & >
(0.0) L0 T (0.0) (1L0)
(a) “AND” (z1 A x2). (b) “OR" (r1 V xz2).
Separating hyperplane
/2 “+" on the left-hand s1de
“~" on the nght-hand si1de
>
(1,0) T
(€) “NOT” (—x4). (d) “XOR" (z & x2).

Fig. 5.4: “AND”, “OR™ and “NOT™ are linearly separable problems. “XOR™ is a
non-linearly separable problem.
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Perceptron
Perceptron solving the “AND”, “OR” and “Not” problems
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Multi-layer Network

The learning ability of perceptrons

The learning process is guaranteed to converge for linear separable
pI‘OblemS; OtherWise ﬂUCtuatiOn Wlll happen. [Minsky and Papert, 1969]

The learning ability of one-layer perceptrons is rather weak, which can
only solve linear separable problems.

In fact, the “AND”, “OR” and “NOT” problems are all linear separable

problems and the learning process is guaranteed to converge to an
appropriate weight vector. However, perceptrons cannot solve non-
linearly separable problems like “XOR”.

Machine Learning Spring Semester
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Multi-layer Network

A two-layer perceptron that solves the “XOR” problem.

(a) W %45 (b) 4~k X 3%

The neuron layer between the input and output layer is known as the
hidden layer, which has activation functions as the output layer.

Machine Learning Spring Semester
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Multi-layer Network

Definition: the neurons in each layer are fully connected with the
neurons in the next layer.

Forward: the input layer receives external signals, the hidden and
output layers process (output) the signals.

Learning: learning from data to adjust the “connection weights”

and “thresholds”.

Multi-layer networks: neural

NN
4?’0’}%’9/

RSAS

2% SO\
AN
€433
R

Z N

networks with hidden layer(s)

(a) Single hidden layer. (b) Two hidden layers.
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Deep learning

Training data

X Y

) 1 . N
)
% ‘Grizzly” }
2
& “Chameleon”}
)

| earned

01

Loss

O O3 604 05 0O

N
9* = argmin Y L(fo(xV),y®
omin 32 Lo (x),y?)

L(fo(x"),y™)
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Gradient descent
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Gradient descent

0" = argmin J(6)
Z

Machine Learning

Spring Semester

28



Gradient descent

N
9* = argmin > L(fo(x?), y®
3 ; (fo(x**), y*)

— g

7(6)

One iteration of gradient descent:

~9J(0)
T

et—l—l _ (9t

learning rate
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Gradient descent

For large N, computing J in every iteration can be expensive

Machine Learning Spring Semester

30



Stochastic gradient descent (SGD)

B \Want to minimize overall loss function J, which is sum of individual losses over each
example.

B |n Stochastic gradient descent, compute gradient on sub-set (batch) of data.
f batchsize=1 then B is updated after each example.
f batchsize=N (full set) then this is standard gradient descent.

B Gradient direction is noisy, relative to average over all examples (standard gradient
descent).

B Advantages

_ Faster: approximate total gradient with small sample
J Implicit regularizer

B Disadvantages
- High variance, unstable updates

Machine Learning Spring Semester
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Computation in a neural net

Linear layer

Input Qutput
representation representation
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Computation in a neural net

Linear layer
Input Qutput
representation representation
Ti C O

O Wi 5 O weights
C O /
O- O
O O 2, 2j = Y Wi T; + b
O O '
. O Z N
M bj ® bias

1C
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Computation in a neural net

Linear layer

Input Qutput
representation representation / weights

2 = XTWj —+ bj
_

§ = {W,b)

N

bias

P
ON0i0)0/0/0/0/0]0
2

-

parameters of the model
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Computation in a neural net

“Perceptron”

I, if z>0
g(Z)={

Input Output 0, otherwise

representation representation

chc

000
|

Pointwise Z
Non-linearity

el
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[S]
o
o
I
I
I
N
o
N
N
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Example: linear classification with a perceptron

s =x'w4b

é‘%@_’@ y = g(2)

" y One layer neural net

(perceptron) can
perform linear
classitication!
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Training data
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w* b* =argmin > L(g(z), y®
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Non-differentiable non-linearity

I, it z2z>0
9(2)={

Input Output 0, otherwise

representation representation

chc

000
|

ek
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=
o
o
I
N
I
N
NE=
N
N
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Non-linearity with soft activation

Tanh
B e —e ~
Input Output 9(z) = er 1 e—?

representation representation

7..

000
|
N
K
X

ek
Q\C
=
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o
I
~
I
N
N S
N
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Computation in a neural net — non-linearity

Tanh
» Bounded between [-1,+1] . _,
€E- — €
9(2) = =
» Saturation for large +/- inputs erTe
1.0-
» Gradients go to zero o
(vanishing gradients)
9(z) o
» Outputs centered at O o
* tanh(z) = 2 sigmoid(2z) —1 N
z

* Derivative of tanh: 1 — tanh(z)?

Machine Learning Spring Semester

40



Computation in a neural net — non-linearity

* Interpretation as firing rate of neuron

» Bounded between [0,1]
» Saturation for large +/- inputs
» Gradients go to zero

» Outputs centered at 0.5
(poor conditioning)

» Not used In practice

Machine Learning

Spring Semester
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Computation in a neural net — non-linearity

» Unbounded output (on positive side)

» Efficient to iImplement: % = {

0, if z<0
1, it z>0

* Also seems to help convergence (see
ox speedup vs tanh in [Krizhevsky et al.])

» Drawback: if strongly in negative
region, unit is dead forever (no gradient).

» Default choice: widely used In current
modadels.

Machine Learning

Spring Semester

Rectified linear unit (RelLU)

g(z) = max(0, z)
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Computation in a neural net — non-linearity

| Leaky Rel U
» where a is small (e.g. 0.02) ,
o) = {max((),z), if z>0
g . 09 J—a, if 2<0 amin(0, z), if 2z <0
cfficient to Implement: 5~ = {1, £ 2> 0 )
» Also known as probabilistic ReLU (PRelLU) 4
;.
* Has non-zero gradients everywhere (unlike  ¢g(z) ».
RelU) N
» 0 can also be learned (see Kaiming He et o
al. 2015). —4 =2 Z(') 2 4

Machine Learning Spring Semester
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Stacking layers - Multi-layer Perceptron (MLP)

Input Intermediate Output
representation representation representation
z h=g(z)
C O—C O
C O—C O
O O
i SS— > o= : Ol y
O le - »(O)—O sz - O
O— O—0O— O
C O—C O
C O—C
b1, bo, >
1 C 1C Z, hh = “hidden units”
Z = "pre-activation hidden layer”
h = ‘post-activation hidden layer”
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Stacking layers - fully connected layers
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Example: how signal evolves
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Example: how signal evolves
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Example: how signal evolves
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Example: how signal evolves

Qutput
representation
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Connectivity patterns

Input Qutput Input Qutput

representation W representation representation W representation
1 2

/ ‘
"0 O= =0
X O=====—0|Y X —0 |y
— — O
= ~ —0
Fully connected layer Locally connected layer
(Sparse W)
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Deep nets

Machine Learning

f(x) = fofr-1(... f2(f1(x))))

Spring Semester

Classify

\.:A 1 . ))
— “clown fish
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Example: linear classification with a perceptron

s =x'w4b

2500

2 Y
1 1
| O‘ é\l O.
—1 —1
—1 0 1 —1 0 1

L1 L1

One layer neural net
(perceptron) can
perform linear
classification!
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Example: nonlinear classification with a deep net net

z = Wi1x + by
@ '@\@@ h = g(z)
© ; @_’@/ 23 = Wah + b
Wi W

Y = 1(23 >O)

hq ho <3 Y
1 1 1 ! {;
1
5 0 50 5 0 0
—1
—2
—1 o | —1 —3
—1 0 1 —1 0 1 —1 0 1
L1 L1 L1

Machine Learning Spring Semester
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Representational power

1 layer? Linear decision surface.

2+ layers? In theory, can represent any function. Assuming

non-trivial non-linearity.
a Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

0 Bengio, Courville, Goodfellow book

http://www.deeplearningbook.org/contents/mlp.htm|

0 Simple proot by M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html

0 D. Mackay book

http://www.interence.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

But issue is efficiency: very wide two layers vs narrow deep
model? In practice, more layers helps.

Machine Learning Spring Semester
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http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

Deep nets

Machine Learning

f(x) = fofr-1(... f2(f1(x))))
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Classitier layer

L ast layer

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

|
- 00000000

Machine Learning

argmax

P

Spring Semester
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| 0SS function

Network output

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

|
- 00000000

Machine Learning

GGround truth label

“clown fish”

| 0SS — error

Spring Semester
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| 0SS function

Network output

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

|
- 00000000

Machine Learning

GGround truth label

“clown fish”

| o0ss — small
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| 0SS function

Network output

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

|
- 00000000

Machine Learning

GGround truth label

‘grizzly bear”

Loss — large

Spring Semester
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Network output  Ground truth label

y y
O dolphin O
O cat O Probability of the observed
Softmax o(2), = K O grizzly bear —— 8 data under the model
— ‘ angel fish X K )
i b H(y,y) = - ;::1 i 10g Ji
@ — cowntish ()
Q iguana Q
Q elephant Q
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l.oss Function

KL 1s not
symmetric

Machine Learning

Intuitively Understanding the

Cross Entropy

H(P'|P) == ) P*(i) g P(0),
i |

TRUE CLASS PREDICTED CLASS
DISTIRBUTION DISTIRBUTION

Intuitively Understanding

the KL divergence
P(i p
Dk, (P]1Q) = ZP(i)IOg£ P1logq_i +pzlogZ_§

Spring Semester
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y (1)

“clown fish”

(1)

Machine Learning

N
9* = argmin > L(fo(xV), y¥
3 ; (fo(x*), y*)

L earned

Loss

Spring Semester

L(fo(x),y™M)
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y(2)
‘grizzly bear”

N
9* = argmin > L(fo(xV), y¥
3 ; (fo(x*), y*)

L earned

Loss

L(fo(x?),y?)

Machine Learning

Spring Semester




(2)
‘chameleon”

L earned

—|Loss| L(fs(x'V),y"")
01 02 93 04 95 06
N
0* — : r (2) | (4)
rgin 3 £,
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Drocessing

Batch (parallel)

0000000000

0000000000
0000000000

0000000000
0000000000
0000000000
0000000000
0000000000

sabeuwl|

Features

—> | Loss

—> | LOSS

—
U
o
7
:
U
8
o0
-
o
—
ap
N
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Machine Learning

Tensors
(multi-dimensional arrays)

Each layer is a representation of the data

Spring Semester

66



Everything is a tensor

@ @\ z = WX + by
o o -0
@ : @/ z3 = Wah + b9
Wl w2 Y — 1(23 > O)
Tensor processing with batch size = 3:
W
! W,
X Z, H,; Zo, Y
o |T1 T2 21| 22 hilho 23 Yy
E —— - —— —>
<,
Machine Learning Spring Semester




Regularizing deep nets

Deep nets have millions of parameters!

On many datasets, it is easy to overfit — we may have more free
parameters than data points to constrain them.

How can we prevent the network from overfitting”?
1. Fewer neurons, fewer layers

2. Weight decay and other regularizers

3. Normalization layers

4,

Machine Learning Spring Semester
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Recall: regularized least squares

K
fo(x) = Z 0, "
k=0

R(@) — )\ ||6’||§ +«— (Only use polynomial terms if you really need
them! Most terms should be zero

ridge regression, a.k.a., Tikhonov regularization

Machine Learning Spring Semester




Regularizing the welignts in a neural net

N
6* = argmin Y L(fo(x?),y") + R(6)
0 =1

R(W) = \||W||2 «<—— weight decay

“We prefer to keep weights small.”

Machine Learning Spring Semester
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Normalization layers

Machine Learning

Z

N\

Norm Z Rel U

s

Spring Semester
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Normalization layers

Machine Learning

Spring Semester
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Normalization layers

Machine Learning

Spring Semester

73



Normalization layers

Machine Learning

Spring Semester
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Normalization layers

Keep track of mean and variance of a unit (or a population of units) over time.

Standardize unit activations by subtracting mean and dividing by
variance.

Sguashes units into a standard range, avoiding overflow.

Also achieves invariance to mean and variance of the training signal.

Both these properties reduce the effective capacity of the model, I.e.
regularize the model.
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Deep nets are data transformers

Layer L

* Deep nets transtform datapoints, layer by layer
e Each layer is a different representation of the data

* We call these representations embeddings

Input

Machine Learning Spring Semester




Two different ways to represent a function

0.9

0.9 1

Machine Learning Spring Semester
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Xout
0.9

0

Two different ways to represent a function

Yt
)
4
V)
=
)
N
en
k=
Yt
Q.
N
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Data transformations for a variety of neural net layers

Xou1: Xout
-1 -05 0 05 1 —1-05 0 05 1
A\ * 4 + /A, /A /A IA + 4/
\ ‘ ' ! I / .
\ | I I / / ! / I I
\ | | | / / I/ | | |
\ | I | | / / | | I
\ | | | | / / | I |
\ \ | [ / // ; / I |
_ \ | I , I |
Xout - 2Xin \\ \ I | /I Xout — x1n2+1 / // // | I
\ | I | / // / / | I
\ \ | I / y / / I |
\ | | I / / / / | I
\ | | I / / / I I |
\ | | I / / / / [ |
A T / / ! [ |
— 000 06 6 —— R ® ® ® o>
—1-05 0 05 1 —1-05 0 05 1
Xout Xout
—1-05 0 05 1 —1-05 0 05 1
S L
/II | | ! / | |
/] | | / | ;o
/o | | I | ;o
A | | 2 | ;o
// ;o | | // / / ;o
. | I I | . . . | | I
Xout = relu(Xiy) | )/ . | Xout = Sigmoid(xsn)| /|
/ | | | / / I I
// / | | | // / / ! |
/ / I I I / / ! / I
/ / | | | / / / I |
/ / I | I / / / | |
/ / | | | / / / / |
@ ® ® ® o> <@ @ @ ® >
—1-05 0 05 1 -5 =295 0 285 5
Xin Xin
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Activations

Parameters

Wiring graph

].O/b

=B

OO0

Machine Learning

OOOO

Equation

= max(

Mapping 1D
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@_>

W relu

Training data

Machine Learning

2

Iogits

softm ax

class
probabilites

Training iteration

Spring Semester
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Layer 1 representation Layer 6 representation

»
0. »
.

.o. - 3 -'1"0
o P ‘o Y 2

structure, construction
covering

commodity, trade good, good
conveyance, transport

i:v:rtebrate [DeCAF, Donahue, Jia, et al. 2013]
ir
hunting dog [Visualization technique : t-sne, van der Maaten & Hinton, 2008]
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