
1

Lecture 8

Backpropagation

2

Backprop

• Review of gradient descent, SGD

• Computation graphs

• Backprop through chains

• Backprop through MLPs

• Backprop through DAGs

• Optimization tricks

• Differentiable programming

3

clown fish

Loss

Learned
Deep learning

4

x

Gradient descent

5

learning rate

One iteration of gradient descent:

Gradient descent

6

Computation Graphs

A graph of functional transformations,
nodes (), that when strung together
perform some useful computation.

Deep learning deals (primarily) with
computation graphs that take the form of
directed acyclic graphs (DAGs), and for
which each node is differentiable.

7

A Simple Example

8

A Simple Example

9

A Simple Example

10

…
…

(output)
• Consider model with layers. Layer has vector of

weights

• Forward pass: takes input and passes it
through each layer :

• An example of such a computation graph is an MLP

• Loss function compares to

• Overall cost is the sum of the losses over all
training examples:

Chains

(input)

11

…
…

Gradient descent

• We need to compute gradients of the cost with
respect to model parameters.

• By design, each layer will be differentiable with respect
to its inputs (the inputs are the data and parameters)

12

Computing gradients

…
…

To compute the gradients, we could start by writing the full
energy J as a function of the model parameters.

And then evaluate each partial derivatives separately…

instead, we can use the chain rule to derive a compact algorithm: backpropagation

13

(

14

Matrix calculus

• We now define a function on vector :
• If is a scalar, then

• If is a vector , then (Jacobian formulation):
The derivative of y is a row vector of size

• column vector of size :

The derivative of y is a matrix of size
(m rows and n columns)

15

The output is a matrix of size

Matrix calculus

• If is a scalar and is a matrix of size , then

Wikipedia: The three types of derivatives that have not been considered are those involving vectors-by-matrices, matrices-by-vectors,
and matrices-by-matrices. These are not as widely considered and a notation is not widely agreed upon.

16

• Chain rule:
Matrix calculus

Its derivative is:
For the function:

and writing , and :

Example, if , ,
with length of vector , , and

17

)

18

Computing gradients

…
…

The loss J is the sum of the losses associated with each
training example

Its gradient with respect to each of the network’s
parameters is:

Aka how much J varies when the parameter is varied.

19

Computing gradients

…
…

How much the loss changes when we change ?
The change is the product between how much the loss changes when we change the output of
the last layer and how much the output changes when we change the layer parameters.

To compute the parameter update for the last
layer, we can use the chain rule:

20

Computing gradients

…
…

To compute the parameter update for the last
layer, we can use the chain rule:

To compute the parameter update for the
second-to-last layer:

21

Computing gradients

…
…

To compute the parameter update for the 2nd
and 1st layers:

Blue terms are all shared! Can compute that product
once and share it between these two equations.

22

The trick of backpropagation — reuse of computation
(aka dynamic programming)

Gradient w.r.t. loss at layer L

Gradient w.r.t. loss at
layer L-1 Layer L’s gradient

23

The trick of backpropagation — reuse of computation
(aka dynamic programming)

24

Hidden layer

Forward
pass

Backpropagation — Goal: to update parameters of layer

Backward
pass • Given the inputs, we just need to evaluate:

• Layer has three inputs (during training)

• And three outputs

25

1. Forward pass: for each training example,
compute the outputs for all layers:

2. Backwards pass: compute loss derivatives
iteratively from top to bottom:

3. Parameter update: Compute gradients
w.r.t. weights, and update weights:

Backpropagation Summary

…
…

(output)

(input)

…

…

26

Linear layer
• Forward propagation:

• Backprop to input:

If we look at the i component of output xout, with respect to the j component of the input, xin:

Therefore:

With W being a
matrix of size
|xout|×|xin|

27

• Backprop to input:

Now let’s see how we use the set of outputs to compute the
weights update equation (backprop to the weights).

• Forward propagation:

Linear layer

28

• Backprop to weights:

If we look at how the parameter Wij changes the cost, only the i component
of the output will change, therefore:

• Forward propagation:

And now we can update the weights:

Linear layer

29

Weight updates:

Linear layer

30

Now lets look at a whole MLP: Forward

31

Now lets look at a whole MLP: Backward

32

l
i
n
e
a
r

r
e
l
u

l
i
n
e
a
r

L
2

L
o
s
s

l
i
n
e
a
r

l
i
n
e
a
r

l
i
n
e
a
r

r
e
l
u

l
i
n
e
a
r

l
i
n
e
a
r

l
i
n
e
a
r

l
i
n
e
a
r

l
i
n
e
a
r

l
i
n
e
a
r

l
i
n
e
a
r

33

merge branch

DAGs

34

Optimization

• What’s the knowledge we have about J?

–We can evaluate

–We can evaluate and

–We can evaluate , , and

Black box optimization

First order optimization

Gradient

Second order optimization
Hessian

Params

35

Which are differentiable?

36

Which will be hard to optimize?

Exploding gradient

Vanishing gradient

Vanishing gradient

Local minima

37

• Want to minimize overall loss function J, which is sum of individual losses over each
example.

• In Stochastic gradient descent, compute gradient on sub-set (batch) of data.

• If batchsize=1 then θ is updated after each example.

• If batchsize=N (full set) then this is standard gradient descent.

• Gradient direction is noisy, relative to average over all examples (standard gradient descent).

• Advantages

• Faster: approximate total gradient with small sample

• Implicit regularizer

• Disadvantages

• High variance, unstable updates

Stochastic Gradient Descent (SGD)

38

• A heavy ball rolling down a hill, gains speed.

• Gradient steps biased to continue in direction of previous update:

Momentum

• Can help or hurt. Strength of momentum is a hyperparam.

39https://distill.pub/2017/momentum/

40

Differentiable programming
Deep learning Differentiable programming

41

Differentiable programming

An emerging term for general models with these
properties is differentiable programming.

Deep nets are popular for a few reasons:
1. Easy to optimize (differentiable)
2. Compositional “block based programming”

42

Programmed by backprop
e.g., programmed by tuning behavior to match
training examples

Programmed by a human

43

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. any scalar cost

44

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. any scalar cost

How the loss changes when the weights of that
function (yellow) change

45

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. any scalar cost

How the cost changes when the input data changes

How the loss changes when the functional node
highlighted changes

46

…

dolphin
cat
grizzly bear
angel fish
chameleon

iguana
elephant

clown fish

How much the total cost is increased or decreased by changing the
parameters.

Optimizing parameters versus optimizing inputs

47

How much the “chameleon” score is increased or decreased by
changing the image pixels.

…

dolphin
cat
grizzly bear
angel fish
chameleon

iguana
elephant

clown fish

Optimizing parameters versus optimizing inputs

48

Unit visualization

Make an image that maximizes the “cat”
output neuron:

[https://distill.pub/2017/feature-visualization/]

49

[https://distill.pub/2017/feature-visualization/]

Make an image that maximizes the
value of neuron j on layer l of the

network:

Unit visualization

50
“Deep dream” [https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html]

51

…

dolphin
cat
grizzly bear
angel fish
School bus

iguana
ostrich

clown fish

Adversarial attacks

What adversarial signal r should we add to change the output label?
𝜕𝑦!
𝜕𝑟

Input

[“Intriguing properties of neural networks”, Szegedy et al. 2014]

+ r

Adversarial signal

52

Adversarial attacks

“Ostrich”

[“Intriguing properties of neural networks”, Szegedy et al. 2014]

+ =

“School bus”

53

CLIP

[https://openai.com/blog/clip/]

https://openai.com/blog/clip/

54

CLIP+GAN

“Some sentence”

To maximize
this

Optimize this

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Differentiable program that measures the similarity between text and images

Image

55

CLIP+GAN

“A cat”

To maximize
this

Optimize this

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Differentiable program that measures the similarity between text and images

56

CLIP+GAN

“What is the answer to the
ultimate question of life,

the universe, and everything?”

To maximize
this

Optimize this

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Differentiable program that measures the similarity between text and images

57

CLIP+GAN

“What is the answer to the
ultimate question of life,

the universe, and everything?”

To maximize
this

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Differentiable program that measures the similarity between text and images

Image
Generator

Optimize this

58

Backpropagation example
node 1

node 2

node 3

node 4

node 5

w13=1

0.2

-3

1

1

-1

input output

tanh

tanh

linear

Learning rate η = -0.2 (because we used positive increments)
Euclidean loss

Exercise: run one iteration of back propagation

Training data: desired output
node 1 node 2 node 5

input

1.0 0.1 0.5

59

Backpropagation example
node 1

node 2

node 3

node 4

node 5

w13=1.02

0.17

-3.0

1.0

1.02

-0.99

input output

tanh

tanh

linear

After one iteration (rounding to two digits)

60

Step by step solution

61

First, let’s rewrite the network using the modular block notation:

We need to compute all these terms simply so we can find the weight updates at the bottom.

3

62

Our goal is to perform the following two updates:

where Wk are the weights at some iteration k of gradient descent given by the first slide:

63

Now, by the chain rule, we can derive equations, working backwards, for each remaining
term we need:

First we compute the derivative of the loss with respect to the output:

ending up with our two gradients needed for the weight update:

Notice the ordering of the two terms being multiplied
here. The notation hides the details but you can write
out all the indices to see that this is the correct ordering
— or just check that the dimensions work out.

64

Finally, we simply plug these values into our equations and compute the numerical updates:

The values for input vector x0 and target y are also given by the first slide:

Forward pass:

65

Backward pass:

diagonal matrix because tanh is a
pointwise operation

66

Gradient updates:

