Lecture 9
Convolution Neural
Network
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‘ Image Classification

0.2 dog |0
0.7 cat |1
0.1 tree | ()
— — y’ ‘ EEEnN I> y
Cross
entropy

100 x 100

(All the images to be classified have the same size.)
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Cross-Entropy

KL is not
symmetric

Machine Learning

Intuitively Understanding the
Cross Entropy

H(P*| P) = —2 P*(i) log,P(Ii),
1

TRUE CLASS PREDICTED CLASS
DISTIRBUTION DISTIRBUTION

Intuitively Understanding

the KL divergence
Dk, (P]1Q) = Z P(l)logQE % P1log% +p210g2_§
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‘ Image Classification

3 channels 100 x 100

100 x 100

100 x 100

value represents intensity
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Fully Connected Network

100 x 100

100 x 100 |

100 x 100 100 x 100 x 3 1000

Do we really need “fully connected” in image processing?
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Observation 1

Identifying some critical patterns
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Observation 1
A neuron does not have to

see the whole image.

Need to see the

whole image? ~ [nput

basic advanced
detector detector
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Simplitication 1

Receptive

field

Machine Learning

3X3 :

IIIIIIIIIIIIIIIII>

] :
3X3
o1 .
1|0
0 o|o
([l {1|o|lo|O|1]O :
LI 3%X3 .
' lo|1]l]0|l0O0|1]|0
Ho|lo|l1|lo|1]|o0

Spring Semester




* (Can different neurons have different
sizes of receptive field?

Simplitication 1

* Cover only some channels?

* Not square receptive field?

3X3X3 — [
weights

. the same
receptive field

Receptive

field

| Can be
overlapped
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| Simplification 1 — Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

all channels stride =2 overlap

A
A A KRS B N N |
Ii.-_;‘-___

kernel size padding

(e.g.,3x3)

The receptive
fields cover the
whole image.

Sy
——————
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Convolution Spatial Dimensions

Input: 7x7
Filter: 3x3

Q: How big is output?

Machine Learning Spring Semester
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Convolution Spatial Dimensions

Machine Learning

Input: 7x7
Filter: 3x3

Q: How big is output?

Output: 5x5

Spring Semester
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Convolution Spatial Dimensions

Machine Learning

Input: 7x7
Filter: 3x3

Q: How big is output?
Output: 5x5

In general:
Input: W

Filter: K

Output: W-K +1

Spring Semester
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‘ Observation 2

» The same patterns appear in different regions.

I detect “beak” in

\ my receptive field.

Each receptive field
needs a “beak” detector?

— f A
/ ~ I detect “beak” in

my receptive field.
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Simpliﬁcation 2 3X3Xx3

.IIIIIIIIIIIIIIIIIIIIIII> T bias

parameter sharing

fg X 3 X 3 weights
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X1 O'(Wlx]_ + Xy + -

| Simplification 2 y

&
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bias

K

L 10O O0O|(1[O]1]O0

Two neurons with the same receptive
field would not share parameters.

bias

O'(Wlxi + xz +”'
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Simplitication 2 — Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Machine Learning Spring Semester
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| Simplification 2 — Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Each receptive field has the neurons with the same set of parameters.

Machine Learning Spring Semester
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https://cs231n.github.io/assets/conv-demo/

Machine Learning Spring Semester
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Stacking Convolution Filters

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

/ >
Convolution Layer
A A

3 6

activation maps

S

We stack these up to get a “new image” of size 28x28x6!

Machine Learning Spring Semester
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Benetit of Convolutional Layer

Fully Connected Laver

Receptive Field

Parameter Sharing

> Jack of all trades,
master of none

Convolutional Layer

» Larger model bias
(for image)

» Some patterns are much smaller than the whole image.

* The same patterns appear in different regions.

Machine Learning Spring Semester
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Convolutional Layer Another story based on filter ©
Each filter detects a

.h.llllllllllllllllllll Smallpattern(BXBX
& 4 & LT 1 channel).
%\ « o H .
;e o :’ : - Filter 1 :
- RN o s [H 3x 3 x channel :
SR N o u =
' . = tensor -
aEEEEEER llll'. = u
- E . I .
= ™ | | | -
.IIIIIIII Il.l" : _— Filterz :
‘ %, D [+ 3 x 3 x channel *=
P “‘ = 4 tensor E
channel = 3 (colorful) “‘ : :
channel =1 (black and white) ““E .

/A i E I N EEEEEEEEEEEEEEEEEEEEEEERN
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Convolutional Layer Consider channel = 1
(black and white image)

1| 1]
lololololq 4| 1| -p | Filtera
ol1|lo|lo|1]o0 1| 1] 1
olo|l1|1|0]|oO

11 |1
1/lo|lo|lo|1]o0 -

1| 1 | o | Filter2
ol1|lo|lo|1]o0

11 |1
olo|l1|lo|1]o0

(The values in the filters
6 x 6 image are unknown
parameters.)
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‘ Convolutional Layer
Filter1

stride=1

6 x 6 image 3

Machine Learning Spring Semester
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Convolutional Layer 1|1 |1
-1 | 1 | -1 | Filter2

-1 1 -1

stride=1 Do the same process
for every filter

N

-1 A -1 A 1T A -1

///

I

///

-1 N0 N4 N3

6 x 6 image
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64
filters

" ,“‘: 1“?3}:\ {
S \ 0

Machine Learning
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Filter:

- I I -
E 1 3X3X64
RN ;

*

*
lllllllllllllllllllllllllllllllllllllllll

Machine Learning Spring Semester



O[O0 1
10O

1|0
1

ol O

(0

O

0

-] ()

—
@)

|

‘ Multiple Convolutional Layer

B

o v N o 7
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‘ Receptive Fields

:

Input

Output

Machine Learning

Spring Semester
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Convolutional Layer

Neuron Version Story Filter Version Story
Each neuron only considers There are a set of filters
a receptive field. detecting small patterns.

The neurons with different
receptive fields share the
parameters.

Each filter convolves
over the input image.

They are the same story.
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| We’re still doing matrix multiplications,
just localized & shared

Recall one neuron in FC layer: With Conv layer:

1| —

w Yy

w takes the Now w takes
entire image! (overlapping) patches
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What needs to be learned?

4

Input:
B,C in,H W

Machine Learning

|44
C out, C in, K, K

Spring Semester
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Output
B,C out, HHW
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‘ Observation 3

» Subsampling the pixels will not change the object

bird
bird

—)

\ W9 subsampling

Machine Learning Spring Semester
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ax Pooling

1 -1 -1
-1 -1 | Filter1
-1 -1 1
r [ 7e <
3 )]l 3)( = 4
= 1 0] = -
& C \/) 3 1
v N[ ~
3 )(3 ]| o )( 1 4
@ W, | AN, 1

-1 1 -1

-1 1 -1

-1 1 -1
-1 -1
-1 -2
-1 -2
@)

No learnable
parameters!

Filter 2

Machine Learning

Spring Semester
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Convolutional Layers :
+ Pooling
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Repeat
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The whole CNNs

(they still need to
go through non-linearity!!)

I e

Pooling

Machine Learning

Spring Semester




Apphcatmn Playmg Go
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»

Next move
(19 x 19 positions)

19 x 19 classes

Fully-connected

48 channels in Black: 1
Alpha Go :
white: —1
none: 0

Machine Learning Spring Semester

better

network can be used

But CNN performs much
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Why CNN for Go playing?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

o%

The same patterns appear in different regions.

sssssssssssssssssss

sssssssssssssssssss

sssssssssssssssssss

Machine Learning Spring Semester




import torch

import torch

class Net(nn
def __in
supe

self

self.
self.
self.

self

self.

NN as nn

.nn. functional as F

.Module):

it__ (self):

r(Net, self).__init__()

.convl = nn.Conv2d(3, 6, 5)

pool = nn.MaxPool2d(2, 2)

conv2 = nn.Conv2d(6, 16, 5)

fcl = nn.Linear(16 x 5 x 5, 120)
.fc2 = nn.Linear (120, 84)

fc3 = nn.Linear(84, 10)

def forward(self, x):

X

X

X

=

X=

X

retu

net = Net()

self.pool(F.relu(self.convl(x)))
self.pool(F.relu(self.conv2(x)))
x.view(-1, 16 * 5 *x 5)
F.relu(self.fcl(x))
F.relu(self.fc2(x))

self.fc3(x)

rn x

import torch.optim as optim

criterion

optimizer

= nn.CrossEntropyLoss()

optim.SGD(net.parameters(), 1r=0.001, momentum=0.9)

/]

for epoch in range(2): # ZHLRBER

running_loss = 0.0

for

i, data in enumerate(trainloader, 0):
# RERBIA

inputs, labels = data

# HEHEO0

optimizer.zero_grad()

# [E@ERE, ROEE, Rt

outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

Machi

ne Learning

Spring Semester
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‘ To learn more ...

= CNN is not invariant to scaling and rotation (we need data
augmentation ©).

Machine Learning Spring Semester
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