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Lecture 9

Convolution Neural 

Network
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Image Classification 

Model

100 × 100

𝒚′ #𝒚
Cross	

entropy

⋮
0
1
0
⋮

cat
dog

tree

(All	the	images	to	be	classified	have	the	same	size.)

⋮
0.2
0.7
0.1
⋮
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Cross-Entropy

KL	is	not	
symmetric
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Image Classification 

100 × 100 100

100

3	channels

3-D	
tensor

100 × 100

100 × 100

100 × 100
value	represents	intensity



Machine Learning Spring	Semester 5

𝑥!

𝑥"

𝑥#

100 × 100

100 × 100

100 × 100 100 × 100 × 3 1000

3	x	107

Do	we	really	need	“fully	connected”	in	image	processing?

…
…

…
…

……

……

……

Fully Connected Network
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Observation 1

Input

1x

2x

Layer	1

…
…

Nx

…
…

Layer	
2

…
…

……

……

……

Identifying	some	critical	patterns

Bird?

Perhaps	human	also	identify	birds	in	a	similar	way	…	J
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Observation 1

Input

1x

2x

Layer	1

…
…

Nx

…
…

Layer	
2

…
…

……

……

……

basic
detector

advanced
detector

bird

Some	patterns	are	much	smaller	than	the	whole	image.

A	neuron	does	not	have	to	
see	the	whole	image.

Need	to	see	the	
whole	image?
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1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Simplification 1 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

3	x	3

Receptive	
field	

…
...

…
...

…
...

3	x	3

3	x	3

3	x	3	x	3	
weights

1

bias



Machine Learning Spring	Semester 9

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Simplification 1 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

3	x	3	x	3	
weights

Receptive	
field	

the	same	
receptive	field

• Can	different	neurons	have	different	
sizes	of	receptive	field?

• Cover	only	some	channels?

• Not	square	receptive	field?

Can	be	
overlapped
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1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Simplification 1 – Typical Setting  

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

all	channels

Each	receptive	field	has	a	set	of	neurons	(e.g.,	64	neurons).		

stride	=	2

kernel	size	
(e.g.,	3	x	3)	

padding

The	receptive	
fields	cover	the	
whole	image.

overlap
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Convolution Spatial Dimensions

Input:	7x7
Filter:	3x3

Q:	How	big	is	output?
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Convolution Spatial Dimensions

Input:	7x7
Filter:	3x3

Q:	How	big	is	output?

Output:	5x5
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Convolution Spatial Dimensions

Input:	7x7
Filter:	3x3

Q:	How	big	is	output?
Output:	5x5

In	general:	
Input:	W	
Filter:	K	
Output:	W	– K	+	1
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Observation 2

n The	same	patterns	appear	in	different	regions.

I	detect	“beak”	in	
my	receptive	field.

I	detect	“beak”	in	
my	receptive	field.

Each	receptive	field	
needs	a	“beak”	detector?
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Simplification 2

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

…
...

…

3	x	3	x	3	
weights

1

bias

…
...

…

3	x	3	x	3	weights

1

bias

parameter	sharing
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Simplification 2

...
… 1

bias

…
… 1

bias

𝑤$

𝑤$

𝑤%

𝑤%

𝑥$
𝑥%

𝑥$&

𝑥%&

𝜎 𝑤$𝑥$ + 𝑤%𝑥% +⋯

𝜎 𝑤$𝑥$& + 𝑤%𝑥%& +⋯

Two	neurons	with	the	same	receptive	
field	would	not	share	parameters.

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
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Simplification 2 – Typical Setting 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Each	receptive	field	has	a	set	of	neurons	(e.g.,	64	neurons).		

… …
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Simplification 2 – Typical Setting 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Each	receptive	field	has	a	set	of	neurons	(e.g.,	64	neurons).		

Each	receptive	field	has	the	neurons	with	the	same	set	of	parameters.	

… …
filter	1
filter	2

filter	3

filter	4

filter	1
filter	2

filter	3

filter	4
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https://cs231n.github.io/assets/conv-demo/
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Stacking Convolution Filters
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Benefit of Convolutional Layer 

Fully	Connected	Layer

• Some	patterns	are	much	smaller	than	the	whole	image.

Receptive	Field

• The	same	patterns	appear	in	different	regions.

Parameter	Sharing

Convolutional	Layer Larger	model	bias
(for	image)

Jack	of	all	trades,
master	of	none
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Convolutional Layer 

Filter	1

……

3	x	3	x	channel

Convolution

……

Filter	2
3	x	3	x	channel

tensor

tensor

channel	=	1 (black	and	white)

Each	filter	detects	a	
small	pattern	(3	x	3	x	
channel).	

Another	story	based	on	filter	J

channel	=	3 (colorful)
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Convolutional Layer 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6	x	6	image

1 -1 -1
-1 1 -1
-1 -1 1

Filter	1

-1 1 -1
-1 1 -1
-1 1 -1

Filter	2
……

(The	values	in	the	filters	
are unknown	
parameters.)

Consider	channel	=	1
(black	and	white	image)
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Convolutional Layer 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6	x	6	image

1 -1 -1
-1 1 -1
-1 -1 1

Filter	1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1
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Convolutional Layer 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6	x	6	image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter	2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Do	the	same	process	
for	every	filter

stride=1

Feature
Map
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Convolution

Convolution

……

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3
64

filters “Image”	with	64 channels

Convolutional Layer 
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Convolution

Convolution

……

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3
64 filters

“Image”	with	64 channels

Filter:
3	x	3	x	64

64

Multiple Convolutional Layer 
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Convolution

Convolution

……

64	
filters

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Multiple Convolutional Layer 



Machine Learning Spring	Semester 29

Receptive Fields
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Convolutional Layer 

Neuron	Version	Story Filter	Version	Story

They	are	the	same	story.

Each	neuron	only	considers	
a	receptive	field.

There	are	a	set	of	filters	
detecting	small	patterns.

The	neurons	with	different	
receptive	fields	share	the	
parameters.

Each	filter	convolves	
over the	input	image.
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We’re still doing matrix multiplications,
just localized & shared
Recall	one	neuron	in	FC	layer: With	Conv	layer:
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What needs to be learned?
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Observation 3

n Subsampling the	pixels	will	not	change	the	object

subsampling

bird
bird
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Pooling – Max Pooling 

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter	2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -
4 3

1 -1 -1
-1 1 -1
-1 -1 1

Filter	1

No	learnable
parameters!
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Convolutional	Layers
+	Pooling	

Re
pe

at

Convolution

……

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -
2

-
2 -1

-1 -1 -1 -1

-1 -1 -
2 1

-1 -1 -
2 1

-1 0 -
4 3

“Image”	with	64	channels

Pooling 3 0

13

-1 1

30
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The whole CNNs

Fully	Connected	
Layers

cat	dog	……

Convolution

Pooling

Convolution

PoolingFlatten

Softmax

(they	still	need	to
go	through	non-linearity!!)
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Application: Playing Go

Network (19 × 19 positions)
Next	move

19	x	19	vector

Black:	1
white:	−1
none:	0

19 × 19 classes

Fully-connected	
network	can	be	used

But	CNN	performs	much	
better.

19 × 19matrix	
(image)

48	channels	in	
Alpha	Go
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Why CNN for Go playing?

n Some	patterns	are	much	smaller	than	the	whole	image

n The	same	patterns	appear	in	different	regions.

Alpha	Go	uses	5 × 5 for	first	layer
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To learn more …

n CNN	is	not	invariant	to	scaling	and	rotation	(we	need	data	
augmentation	J).	


